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FOREWORD 

 

This report describes the development of a methodology for the evaluation of pavement 
properties from data collected by high-speed sensors, and the development of pavement 
performance models that form the basis of the methodology.  These include a pavement 
rutting progression model, a pavement cracking initiation and prediction model system. 
 
The report also describes the development of an analytical procedure for inferring 
pavement resistance by using measurements obtained from high-speed sensors.  The 
procedure is based on Bayesian updating principles, and combines the predictions from 
the relevant pavement performance model and the measurements obtained from the 
sensors. 
 
The methodology was tested on two different types of field data: a data set obtained from 
the Mn/Road site, a set of specially built pavement sections, and condition survey data 
obtained from various sites in the U.S. 
 
The results of the tests indicated that the use of the measurements obtained from high-
speed sensors in the analytical procedure jointly with the performance prediction models 
helped improve the precision of pavement rutting progression. 
 
The report includes complete documentation of the software that includes the 
methodology developed in this research, as well as hardware specifications for its future 
implementation. 
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CHAPTER 1 

INTRODUCTION 

 

Overview of Report Contents 

 

This report describes the work performed by a research team consisting of Dr. Samer Madanat 

and his graduate students, of the Department of Civil and Environmental Engineering at the 

University of California at Berkeley, and Dr. Kenneth Maser and his technical staff, at 

Infrasense, Inc.  The subject of this research is “Pavement Evaluation Using Integrated Data 

from High-Speed Sensors”. 

The report consists of the following chapters.  The present chapter, introduction, describes the 

problem, presents the background and literature review, and lists the objectives and scope of the 

research. 

The technical discussion is contained in chapter 2.  It includes a description of the pavement 

deterioration models that were developed as part of this research, specifically models of rutting 

progression and cracking initiation.  Chapter 2 also includes a description of the analytical 

procedure used for inferring pavement properties using measurements of pavement conditions 

from high-speed sensors.  This analytical procedure is tested using two types of data that were 

collected as part of this research: experimentally designed pavement sections subject to actual 

traffic (the MnRoads data set), and in-service pavement sections (collected from various state 

agencies’ Pavement Management Systems).  These data sets are also described in chapter 2.  The 

chapter closes with a description of the test results and their evaluations. 

Chapter 3 describes our conclusions and recommendations on the basis of the research project 

results. 

Finally, Chapter 4 provides specific implementation details that are necessary for successful use 

of the research results and products by Caltrans, including both software and hardware 

specifications. 
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Problem 

 

Pavement maintenance and rehabilitation, and the prediction of future pavement life are heavily 

dependent on data describing the structure and condition of each pavement segment in the road 

network. Pavement data for these is typically based on four measures: (1) surface distress and 

rutting; (2) longitudinal profile (roughness); (3) structural capacity; and  (4) skid resistance. 

These measures were originally developed in conjunction with technologies and surveying 

systems, which are now over 20 years old. A number of these technologies involve lane closures 

for detailed pavement measurements, such as visual observation and manual measurement of 

cracks, and the taking of pavement cores. 

Over the past 10-15 years there has been a rapid introduction of continuous automated high-

speed pavement condition surveying systems. Commercial systems are now available which can 

continuously measure and record the following parameters: the type, degree, and intensity of 

cracking; the width, depth, and profile of rutting; and the pavement layer thickness (Wang, 1998; 

Iowa State, 1990; Maser, 1996). Systems for evaluating pavement deflections at driving speeds 

are under development, and prototype systems are being evaluated. These high-speed surveying 

systems now provide 100% pavement coverage with a level of detail that was previously 

unattainable.  

For example, INFRASENSE has been heavily involved with the applications of ground 

penetrating radar for the evaluation of pavement layer thickness. Typical equipment used for this 

type of data collection is shown in Figure 1 below. The data is collected at normal driving speed. 

Similar equipment for measurement of rut depth and roughness at highway speed has been 

available on the market for 10 years.  More recently, equipment and processing techniques have 

become available for continuous evaluation of surface distress such as different types of 

pavement cracking. Each type of equipment can produce some measure of pavement condition as 

a continuous function of distance. For example, typical results for a thickness survey are shown 

in Figure 2. It can be assumed that a series of plots, similar to that of Figure 2, will be available 

as input to the pavement evaluation process.  

Up until recently, each data source has been used separately to evaluation one aspect of the 

pavement’s behavior. The goal of the research described herein was to utilize all of the data in a 
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way that provides a more complete picture of the pavement’s current condition and future 

performance. With such a picture, maintenance and rehabilitation strategies and activities can 

truly address the real pavement conditions, and can be designed to optimize the remaining life of 

the pavement at minimal life cycle cost. 

 

 
           antenna       electronic distance wheel 

Figure 1 - GPR Survey Vehicle 
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Figure 2 - Typical Output of High-Speed Pavement Thickness Survey 
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Background and Literature Review 

 

The use of high-speed sensor technology by highway agencies has been limited because there is 

inadequate means for making use of the large volume of data that they generate. The data that is 

collected is aggregated into traditional condition and performance indices such as the PCI and 

the IRI (eg. Shahin and Kohn, 1981) which are then used as a basis for pavement and 

maintenance management decisions. These indices, although simple and widely used in the past, 

do not take advantage of the extensive capability available from high-speed pavement sensors. 

Also, the use of separate indices for different aspects of the pavement behavior fails to treat the 

pavement as a single physical system with a mechanistic rationale for the observed conditions. 

Therefore, the index approach does not explain the basic causes of the pavement’s behavior, and 

hence can neither accurately project future behavior nor can it lead to an optimal maintenance 

and rehabilitation strategy. 

With high-speed pavement sensors it is now possible to examine 3 to 4 pavement parameters 

which are measured independently and continuously along the same length of the pavement. The 

simultaneous measurement of multiple pavement distresses can provide sufficient information to 

statistically estimate underlying pavement properties such as layer resistance coefficients (Maser 

et al 1989).  By inferring the values of such variables in-situ, pavement engineers can use them 

for purposes of deterioration prediction.  Furthermore, inferring the causes of the observed 

deterioration allows pavement engineers to select more effective maintenance strategies.  

For example, we can now continuously measure pavement cracking (with video processing 

and/or laser crack detectors), rutting (with optical, laser, or ultrasonic sensors), and layer 

thickness (with ground penetrating radar). Pavement cracking is caused by fatigue, which is 

related to the maximum strain in the pavement structure. The strain in the pavement structure is 

mechanistically related to the load, the layer coefficients, and the layer thickness. Since loads, 

thickness, and cracking can now be continuously measured, there is enough information to 

determine the pavement layer coefficients and the cause of cracking, and to predict its future 

development.  
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Objectives and Scope 

 

Pavement represents a physical system characterized by relationships between input (loads, 

environmental conditions) and observable output (roughness, rutting, cracking, etc.). These 

relationships involve properties of the pavement system, which can change over time. The 

pavement maintenance and rehabilitation process involves 

◊ observations of  the pavement condition;  

◊ calculating or estimating physical properties related to these observed conditions; 

◊ modeling the remaining life of the pavement based on the estimated pavement properties; 

◊ implementing maintenance and rehabilitation that maximizes the remaining life of the 

pavement at minimum cost. 

In the context of the above framework, the work described in this report is based on two 

underlying hypotheses: 

1.  The key physical properties of the pavement associated with observed pavement conditions 

can be estimated from the data obtained from a suite of high  speed pavement sensors; and 

2.  These estimates will be sufficiently accurate to lead to more effective maintenance and 

rehabilitation decisions that are current made with the manner in which the data is currently 

used.  

The long-term objective of the present work is to develop a hardware/software system for 

automated prediction of pavement life and for selection of the optimum maintenance and 

rehabilitation. The near-term objective of this research is to develop prototype software, test the 

software on actual field data, and develop software and hardware specifications for a final 

system. The prototype software will, at a minimum, produce estimates pavement layer 

coefficients based on pavement input data (loads and environmental exposure) and on 

measurements obtained from high-speed pavement sensors. Achievement of this objective will 

be based on development of a methodology for determining these underlying pavement 

properties from field observations using the latent variable approach. An additional near term 

objective is to use the estimated values of the pavement layer coefficients to predict future 

deterioration and remaining life.  This can be achieved by using these estimates as input values 

(causal variables) in existing mechanistic-empirical deterioration models.  
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CHAPTER 2 

TECHNICAL DISCUSSION 

 

Development of Pavement Deterioration Models 

 

Pavement Rutting Progression Models 

 

Rutting, loosely defined as longitudinal depressions in the wheel paths of asphalt concrete 

pavements, has historically been a primary criterion of structural performance in many pavement 

design methods. As pointed out by Paterson (1987), other types of permanent deformation are 

generally much less tractable for direct modeling since they depend to a larger degree on 

material properties, their local variations, and their interactions with the pavement’s 

microclimate. Rutting is also a serious safety issue for road users. When water accumulates in 

the ruts, there is a potential for hydroplaning. The hydroplaning phenomenon consists of the 

buildup of a thin layer of water between the pavement and the tire and results in the tire losing 

contact with the surface, with the consequent loss of steering control (Yoder and Witczak 1975).  

With increasing magnitudes and repetitions of loads and increased tire pressures, the rutting 

problem has become severe in many highway pavements (Haas et. al, 1994). Considerable 

research has been conducted over the years for developing models to predict the progression of 

rutting, but with limited success. This report is concerned with the development of an empirical 

rutting progression model using experimental data. The data set used in this report is taken from 

the AASHO Road Test (HRB 1962).  

The use of experimental data, as opposed to field data collected from condition surveys of in-

service pavements, for model development has the following characteristics:  

Advantages: The main factors affecting rutting such as axle loads and layer thicknesses are 

carefully controlled, therefore the researcher can capture their effects on rutting progression. This 

is hardly possible using field data alone. Field data generally involve a distribution of loads 

whose measurement is not very accurate. Discriminating the effect of each load level from a 

distribution of loads is a difficult problem, which is not present when each pavement is subjected 

to a known load level. Further, in field data, the control of constructed layer thicknesses is of 

lower quality, and the design thicknesses are usually a function of traffic. The latter causes an 
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econometric problem known as endogeneity. Endogenous variables are determined through the 

joint interaction with other variables within the model. In field data, layer thicknesses are 

endogenous since they are usually a function of predicted traffic. Estimation of parameters by 

Ordinary Least Squares (OLS) regression results in biased and inconsistent results in the 

presence of endogenous variables. This problem is avoided in experimental data.  

Disadvantage: The main disadvantage is that experimental data may not represent the true 

deterioration mechanism of in-service pavements. For example, material aging is not captured in 

accelerated pavement loading tests. 

The salient features of the model specification in this report are: 

1) no restrictions have been imposed on the values of the parameters representing equivalencies 

between axles or pavement layer resistance, 

2) the definition of a thawing index variable that captures the effects of the environmental 

factors at the AASHO Road Test, and 

3) the model predicts rut depths by adding predicted values of the increment of rut depth for 

each time period; this is particularly advantageous in a pavement management context 

where the engineer is interested in predicting changes in rut depth.  

To estimate the model parameters, an unbalanced panel data set with more than 14,000 

observations from the AASHO Road Test was used. An unbalanced panel data set consists of 

observations for different pavement units through time, where the numbers of observations for 

each pavement section are not necessarily the same. The model is nonlinear in the parameters 

and the variables so special routines had to be programmed to account for the non linearity of the 

model and the panel structure of the data. 

 

Background 

There is an extensive body of literature on the rutting of asphalt concrete pavements spanning 

many decades. Part of this literature is reviewed in the following subsections. First, we identify 

the factors affecting the rutting performance of asphalt concrete pavements. Then, we review 

some results from the mechanistic-empirical literature. The information in these two subsections 

is considered important for the development of a meaningful model specification. Finally, we 

review significant empirical models that have been developed to date. 
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Factors that affect rutting. 

Rutting is strongly influenced by traffic loading, but climate can also have a large influence 

especially when the pavement subgrade undergoes seasonal variations in bearing capacity, or 

when bituminous courses are subjected to high temperatures (OECD 1988). Ruts develop within 

pavement layers when traffic loading causes layer densification and/or when stresses induced in 

the pavement materials are sufficient to cause shear displacements within the materials.  

Research performed over several decades has shown that the susceptibility to rutting can be 

linked to the following material attributes: excessive asphalt content, excessive fine-grained 

aggregate, high percentages of natural sand, rounded aggregate particles, excessive permissible 

moisture in the mix or in granular materials and soils, temperature susceptible asphalt cement, 

and cold weather paving leading to low density. Other factors affecting rutting are temperature,  

precipitation and time, type and extent of loading. These factors can also affect severely the 

rutting performance of a given mix. The above factors combined also determine the stiffness 

measures (Hveem and Marshal stability, complex modulus, resilient modulus, etc) and deflection 

measures that are normally used for pavement distress modeling. Generally, only a few of these 

factors are measured in experimental data sets, and thus can be used in an empirical model such 

as the one developed herein. 

 

Evidence from the Mechanistic-Empirical Literature. 

The focus of this report is the statistical estimation of models that relate rut depth trends to 

explanatory variables representing pavement structure, loading and climate. These are described 

as empirical models in the pavement literature. Despite this focus, relevant results from the 

literature on the mechanistic-empirical approach to modeling pavement rutting are reviewed so 

as to identify suitable model forms. 

Rutting is the result of the integration of the plastic strains over the pavement structure. 

Numerous models have been used to relate plastic strain accumulation to the number of load or 

stress repetitions. By far, the most common model found in the literature is of the form 

b
p Na=ε  (1) 

where 
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εp  = permanent or plastic strain; 

N = number of stress applications; 

a,b = estimated coefficients, functions of applied stress, and material characteristics. 

The above model form has been proposed for subgrades and unbound materials (Monismith 

1976, Behzadi G. and W.O. Yandell 1996, Diylajee and Raymond 1982, Vuong and Amstrong 

1991) as well as for asphalt concrete mixes (Khedr 1986). 

The following equation form is used by Kenis (1977) and by Ali et al (1997): 

εp(N)= a’ εe Nb’ (2) 

where εe is the elastic strain and a’ and b’ are permanent deformation parameters. This equation 

is based on the proportionality between the plastic and elastic strains in a pavement structure 

under traffic loading. Given a level of elastic strain, this equation is equivalent to equation (1). 

In the Texas Flexible Pavement System (TFPS) the permanent strain on asphalt concrete mixes is 

assumed to behave in essentially the same manner as above: 

"" b
e

p Na
N

−ε=
∂

ε∂
 (3) 

where a” and b” are estimated parameters and εe is the elastic strain (Button et al 1990). 

Obviously, the form in Equation (2) is obtained if this equation is integrated. In the TFPS 

analysis, the elastic strain is assumed to remain constant throughout the life of the pavement. 

The coefficients a and b (and also a’, a”, b’, and b”) are usually considered functions of applied 

stresses and material properties. Their estimates vary widely among researchers depending on 

the materials involved and test procedures. In general, a is influenced by these factors to a 

greater extent than b.   

 

Evidence from the empirical literature. 

The most common relevant finding in the empirical literature is the concave shapes of rut depth 

with cumulative number of load repetitions. Such trends have been observed with Heavy Vehicle 

Simulators by Maree et al (1982) and by Harvey et al (1997) and in other experiments such as 
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the AASHO Road Test (HRB 1962). Further, most developed models specify such a concave 

shape (Lister 1981, Paterson 1987). 

Most rutting models developed to date have been limited to linear specifications (e.g., Saraf 

1982) and do not account for the effects of the environment (e.g., Saraf 1982, Thompson and 

Nauman 1993). Paterson (1987) developed a non-linear model with data from in-service 

pavements that included the effect of the environment. Unfortunately, in spite of its complexity, 

it produced a mediocre fit. 

 

The AASHO Road Test 

To date, the AASHO Road Test remains the most comprehensive controlled experiment 

performed for evaluating the performance of pavements in the U.S. The test was carried out 

between 1959 and 1962 near Ottawa, Illinois about 80 mi southwest of Chicago.  

All variables for pavement studies were concerned with pavement designs and loads within each 

of the sections. The sections were subjected to traffic for slightly more than 2 years. Twelve set 

of sections were subjected twelve different combinations of axle load and axle configuration. 

The climate of the Road Test area was temperate with an average annual precipitation of about 

34 in. The average mean summer temperature was 76 F and the average mean winter temperature 

27 F. The soil usually remained frozen during the winter with alternate thawing and freezing of 

the immediate surface. 

The experiment included a total of 234 structural sections or 468 test sections. A majority of the 

test sections in each of the twelve sets comprised a complete factorial experiment, the design 

factors of which were surfacing thickness, base thickness and subbase thickness. These 

experiments were referred to as the main factorial designs. The data that will be used in this 

research consist of this main factorial design. 

The information available for model estimation consists essentially of initial thicknesses of the 

asphalt concrete, base and subbase layers and biweekly information on axle load and number of 

repetitions, mean maximum and minimum temperatures, and mean rut depth. The asphalt 

concrete, base and subbase material characteristics were the same for all sections. 

In the AASHO Road Test, the routine biweekly rut measurements were carried out with the 

device shown in Figure 3. The distance between the legs of this device is 1.2 m (4-ft). This 
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measurement methodology differs from the one specified in AASHTO (1993), which specifies 

that a 4-foot (1.2 m) straightedge should be laid across the rut and the maximum depth measured. 

AASHO Device

1.2 m straight-edge

RD1 RD2

 

Figure 3:  Rut depth measurements with a straightedge (RD1) vs. rut depth measurements 

with AASHO device (RD2). 

Nevertheless, for ruts where all the layers are contributing to rutting (the high and low points are 

far apart transversally and the low point is located near the middle of the rut), the difference 

should be negligible. According to cross sections shown in the AASHO Road Test report (HRB 

1962), this seems to have been the case for most sections at the AASHO Road Test. 

 

Model specification 

The literature revealed that the results of laboratory tests indicate that most materials follow the 

strain-number of stress repetitions relation given by equation (1). Thompson and Nauman 

(1993), based on the above observation, argued that it was reasonable to assume that a pavement 

surface model would be of the same form. They proposed the model given by equation (4).  

RR = RD/N = A/NB (4) 

where 
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RR = rutting rate, 

RD = rut depth (in.) 

N = number of repeated load applications, and 

A and B = terms developed from field calibration data. 

Further, the concave trend of deformation with respect to the number of load applications 

appears in most empirical and accelerated test studies. Therefore, the same functional form will 

be the starting point for the model formulation in this section, but instead of a rutting rate as used 

by Thompson and Nauman (which was in fact a secant rate), rut depth will be used directly. 

Specifically, the following specification is used: 

ib
itiiit NaRD +β= 10  (5) 

where 

RDit = rut depth for section i at time t (mm); 

Nit = a variable representing the cumulative number of load repetitions applied to 

pavement section i up to time period t (a more complete definition is given later);  

ai and bi = functions of the characteristics of pavement i such as layer thicknesses, 

gradations, etc; and 

βι10 = rut depth immediately after construction for pavement section i (the reason for 

using the subscript 10 will be apparent shortly). 

For laboratory experiments that are usually carried out at a given stress level, the definition of N 

is straightforward, but this is not so for the AASHO Road Test where different pavement 

sections were subjected to various load levels and different load configurations (single or tandem 

axles). This is even more complex for actual pavement sections since each section is subjected to 

a distribution of loads and configurations. A possible solution to this is to use the cumulative 

number of equivalent single axle loads (ESALs). This is actually what many researchers have 

done in the past. The problem with this approach is that it is assumed that the load equivalency 

factors that were based on the serviceability index are appropriate in the case of rutting. This is 

unlikely, and consequently biases may be introduced in the estimation if this path is followed. 
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Nevertheless, the concept (if not the specific values) of axle load equivalencies is well accepted 

in pavement engineering, and thus this concept can be used to define Nit as follows: 
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where 

∆Vis = number of vehicle passes on section i during period s, 

FLi = load in front axle ot truck used in section i (kN or lbs); 

AL1i = load in single load axle(s) (rear axle(s)) of truck used in section i (kN or lbs); 

AL2i = load in tandem load axle(s) (rear axle(s)) of truck used in section i (kN or lbs); 

Ri = number of load axles in truck used in section i (Ri=1 or 2);  

SAL = 80 kN if loads are expressed in kN or 18,000 lbs if loads are expressed in lbs; and 

βj = parameters to be estimated (j=5,6,7). These parameters determine the equivalencies 

between axle loads. 

In equation (6) all the single loads have been standardized to an equivalent 80 kN (18,000 lbs) 

single axle load, which is the standard practice in pavement engineering. Tandem axles have 

been standardized by β7 ⋅ 80 kN, which is the standard tandem axle producing the same rutting as 

a single 80 kN axle. This definition of Nit makes it independent of the units being used. 

We assumed that the exponent for the front axle load is the same as the exponent for single axle 

loads (β5). The only difference between these axles is that the front axle had a single wheel 

whereas the rear single axles had double wheels. Certainly, the rutting produced by these two 

different wheel configurations (for a given load) could be different, but the differences are 

mostly due to differences in stress distributions in the upper portions of the pavement. In the 

lower portions of the pavement the distributions of stresses are similar. The separation between 

tires of dual wheels is of the order of 0.3 m. Also, tire pressures are usually not equal because of 

temperature differences between the tires, road surface irregularities, bending of the axle, etc 

(OECD 1988). Thus, although dual wheels distribute the load in a greater area of the pavement 

surface, the above factors diminish that advantage. Further, the loads in front axles are usually 
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smaller and thus of lower importance. In any case, although it would be desirable to obtain 

different coefficients for these two wheel configurations, this was not possible because the ratio 

of rear single axle load (twin wheel) to front axle load (single wheel) varied only between 3 and 

3.5 for the different pavement sections. Nevertheless, it is considered better to include the front 

axle loads into the model than to neglect them altogether as has been done in previous research. 

The identification of a different exponent for tandem axles is considered important. The reason is 

that the axle separation in tandem axles is large (1.0 to 1.2 m). Thus, the differences in stresses 

between single and tandem axles are substantial at greater depths. And β6 captures the 

equivalency between different load magnitudes for tandem axles.  

 

Specifications for ai and bi: 

From the literature review in section 2, it seems that a plausible assumption for bi is that is 

relatively constant or at most that it varies linearly with pavement strength. In this study, bi is 

assumed to be constant for all sections. On the other hand, ai seems to vary widely with 

pavement strength. 

Thompson and Nauman (1993), after performing 192 regressions with the specification of 

equation (4), observed low A’s for structural responses less than a certain value, but high 

magnitudes and erratic trends above that value. Based on these results, they concluded that their 

A term followed threshold type relations. However, this conclusion is indicative of the inability 

to estimate the true relation. It is more likely that the relation is rapidly varying near their 

threshold. The observed trends for weak pavements may be a consequence of their estimation 

approach, or it may be because the variance of the intercept increases with its mean value. 

Thompson and Nauman’s results indicate that as the structural response decreases, i.e., as the 

pavement strength increases, their A term decreases. This means that the ai vary with strength in 

the manner illustrated in Figure 4. This is also what our intuition would suggest. 
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Figure 4: Anticipated relation between the ai coefficient and the strength of a pavement. 

 
ai 

 

 

 

 

 

Strength  

This simply says that the stronger the pavement, the less the accumulated rut depth for a given 

traffic. 

The exponential function provides a way to obtain such a shape. To model pavement strength, a 

concept similar to the structural number defined in AASHTO (1993) is used. Specifically, the 

strength of the pavement is modeled as: 

332211 iiii TTTRN β+β+β=  (7) 

where 

RNi = resistance number for pavement i (although this is almost identical to the structural 

number, a different name is used to make explicit that this number is specific to 

rutting) 

Ti1 = thickness of the asphalt concrete layer for pavement i (m); 

Ti2 = thickness of the granular base layer for pavement i (m); 

Ti3 = thickness of the subbase layer for pavement i (m); 

βj = contribution of the jth layer to the pavement resistance, where j = 1,2,3 for asphalt 

concrete, base, and subbase respectively. 

The following expression is used to relate ai to RNi: 

)(
44

332211 iiii TTTRN
i eea βββββ ++−− ==  (8) 

 16



The above equation admits the following interpretation. Assume that Ti1 = Ti2 = Ti3 = 0, that is, 

traffic loads move over the subgrade material (or over a thin wearing course that does not add 

structural resistance). In such a situation ai = β4 represents the rut depth caused by the first 

standard axle load passage (see equation 5). Now if a thickness Ti3 of subbase material is added 

to the pavement structure, then the rut depth caused by the first standard axle load passage is 

reduced in a proportion given by exp(-β3 Ti3). That is, the rut depth caused by the first standard 

axle load is now ai = β4 exp(-β3 Ti3). A similar reasoning for the base and asphalt concrete layers 

leads to equation (8). These β’s are functions of the subgrade, subbase, base, and asphalt 

concrete materials. In summary, ai represents the rut depth caused in the pavement structure by 

the first standard axle load. 

This is a convenient interpretation because as the pavement becomes more resistant, rut depth 

approaches zero asymptotically. Of course, it also implies that rut depth could be reduced as 

much as one wants by using only a low quality subbase material which is not realistic. But, as 

will be seen later, for common pavement structures, this specification produces reasonable 

results. 

 

Environmental effects: 

Most sections in the AASHO Road Test showed an evident increment in the rate of rut depth 

progression during the spring months. In what follows, an environmental variable is defined with 

the information available. 

The environmental information available in our database for the AASHO Road Test was very 

limited. Nevertheless, from the information about the maximum and minimum temperatures, a 

thawing index is computed with the following reasoning. Freeze will only accumulate when 

temperatures are below 0ºC. Thus an accumulated freeze index for period t is computed as 

follows: 

⎪⎩
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where MeanMinTt is the mean minimum temperature (ºC) in the two week period t (in the 

AASHO road test there was no freezing in period 1, so it is not necessary to worry about what 

happened before that) and where Ti is the number of observations for section i. 

Once the minimum temperature falls below zero, freezing starts to accumulate. At some point in 

time the minimum temperature again exceeds zero, thus reducing the freezing index. When there 

are enough periods with temperatures above zero the accumulated freeze index is exhausted and 

therefore the variable AccumFze becomes zero again. 

The effect of thawing will be the greatest when there is considerable accumulated freeze from 

previous periods and the temperatures in the current period are substantially above zero. In such 

cases there will be large amounts of water in the pavement structure with the consequent 

detrimental effects. Thus, a thawing index representing this interaction of cumulative freeze with 

temperatures above zero is defined as follows 

)0,max( ttt MeanMaxTAccumFzeTI ⋅=    (with units of ºC2) (10) 

where MeanMaxTt is the mean maximum temperature (ºC) in the two week period preceding t. 

This thawing index will be zero when the mean maximum temperature in the period is below 

zero or when there is no accumulated freeze. Thus, as illustrated in Figure 5, when thawing 

starts, this variable starts increasing, then reaches a maximum and then returns to zero at the end 

of the thawing period. For freezing to occur in the pavement structure, there should be enough 

water available. Given the precipitations at the AASHO road test site and water table 

information, this seems to have been the case. 

Having defined the thawing index, we now explain how it is incorporated in the model. 

Obviously, thawing alters the materials’ properties so one could try to incorporate its effect in ai. 

The problem is that equation (5) is not suitable for this kind of adjustment. The reason is that one 

would like to obtain a monotonic increasing function with traffic. If during thawing, ai increase, 

then it is possible that the function decreases afterwards when there is no more thawing.  

Since the evidence in the literature suggests that equation (5) is a good approximation when the 

environmental conditions do not change, it is desirable to keep this functional form. Taking a 

first order Taylor series approximation around the conditions in the previous time period gives  
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With this new formulation, introducing a correction factor for ai when the environmental 

conditions change is done as follows: 
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where bi has been replaced by β9. Or, substituting successively the values of RDi,t-1, RDi,t-2, etc, 
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Whenever the thawing index is zero, the new multiplicative factor (exp(β8 TIt) ) is 1 and 

whenever there is thawing the factor is greater than one implying that the pavement will rut 

faster during the corresponding period. Equation (13), or equivalently equation (14), is the model 

specification that we used. 

It is important to stress that the use of the thawing index is not intended to be a precise 

description of the freeze-thaw problem in more general cases. However, the intent is to capture 

most of the freeze-thaw effects at the AASHO Road Test so as not to cause bias in the estimation 

of the loading and resistance parameters. 

Figure 5: Thawing index computed at the AASHO Road Test. 
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Model estimation results 

Equations (13) or (14) are the expressions of the conditional expectation function of rut depth for 

section i at time t, E(RDit|Xit,β). This function gives expected rut depth conditional on the set of 

regressors Xit = (1,Ti1,Ti2,Ti3,∆Vit,.., ∆Vi1,FLi,Ri,AL1i,AL2i,TIt)’ and on the vector of parameters β 

= (β1, .., β11)’. The model can be expressed as the following set of regression equations: 

ititit RDERD ε+= ),( βitX       i = 1,…,S ,    t = 1,…,Ti (15) 

where Ti is the number of observations for section i and εit is the error term which is assumed to 

have mean 0 and constant variance σε
2. As can be seen from either equation (13) or equation (14) 

this model is nonlinear in the variables and the parameters. Moreover, the vector Xit contains the 

whole history of loading through the ∆V’s. All these factors make the estimation of the model 

fairly complex. 

When a data set consists of observations for different pavement units through time, several 

methods of pooling the data can be used. Such data sets are known as panel data sets. One could 

estimate separate cross-section regressions (each using observations for different pavement 

sections at the same point in time) or separate time-series regressions (each with observations for 

a single pavement section over time). However, if the model parameters are constant over time 
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and over cross-sectional units more efficient parameter estimates (i.e., estimates with lower 

variance) can be obtained if all the data are combined and a single regression is run. This is the 

case if all observations are the result of a single underlying deterioration process. 

The simplest technique is to combine all cross-section data and time series data and perform 

ordinary least-squares regression on the entire data set. In the present context, this would mean to 

perform a regression using equation (15) with E(RDit|Xit,β) given by equation (14) and assuming 

that βi10 = β10 is the same for all i. The problem with this procedure is that despite the 

reasonableness of the assumption that all the observations are the result of a single underlying 

process, some unobserved heterogeneity (unobserved and persistent pavement-specific factors) is 

still expected among different pavement sections. 

Examples of unobserved heterogeneity are the initial cross-section profile and layer compaction. 

The former directly influences the intercept term in our model. Layer compaction can also 

influence the intercept term in a more subtle way. For example, a layer that has not been 

adequately compacted will densify rapidly with the first traffic loads on the wheel paths. This 

effect will show up mostly in the intercept term, afterward, the conditions are similar to the ones 

that would have been obtained with good compaction. These are examples of the kind of 

unobserved heterogeneity that we account for in our model.  

The advantage of panel data set over a cross sectional data set is that it allows the researcher 

greater flexibility in modeling differences in behavior across individual units (Greene 1997). The 

two most widely used frameworks for modeling unobserved heterogeneity are called fixed and 

random effects respectively. Both approaches assume that the unobserved heterogeneity can be 

captured through the constant term. In the fixed effects approach, the individual effect (βi10) is 

taken to be constant over time and specific to the individual pavement section i. This approach 

always produces consistent results (consistent as S, the number of sections, approaches infinity) 

but it is costly in terms of the number of degrees of freedom lost, because a different intercept 

term is required for each pavement section. 

An alternative approach is the random effects specification. Since the inclusion of different 

constant terms (βi10) represents a lack of knowledge about the model, it is natural to view the 

section specific constant terms as randomly distributed across pavement sections. Specifically, it 

is assumed that βi10 = β10 + ui, where ui is a random disturbance characterizing the ith section and 
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is constant through time with mean E(ui) = 0 and constant variance equal to σu
2. With these 

assumptions the random effects specification is: 
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This approach is more appropriate if it is believed that the sampled cross sectional units are 

drawn from a large population (Greene 1997), which is the case in the AASHO Road Test. 

However it yields consistent parameter estimates only if the regressors are uncorrelated with the 

individual effects ui. This can be tested using a Hausman specification test (Greene 1997). 

Both approaches are used to estimate the model parameters in this report. The estimation 

approach for linear models can be found, for example, in Greene (1997). The estimation of our 

model parameters is more complicated since our the model is nonlinear in the variables and the 

parameters, and the panel is unbalanced (that is, there are different number of observations for 

different pavement sections). Therefore special routines had to be programmed for estimation of 

the model. The details of the estimation approach are given in Archilla (1999). 

Initially, the model was estimated separately for the inner wheelpath (IWP) rutting and the outer 

wheelpath (OWP) rutting using both the fixed and random effects approaches. A total of 7005 

observations corresponding to 244 pavement sections were used for the IWP and 7035 

observations corresponding to 247 pavement sections were used for the OWP. For each wheel 

path, the parameter estimates were almost identical from both approaches. Although for both 

wheel paths, the fits were good and all the parameter estimates were significant (the smallest 

asymptotic t-statistic was 6.6), there were significant discrepancies between the same parameters 

for both wheel paths. These differences were not surprising per se, since differences in the 

mechanism of rutting can be visually observed in plots of rutting trends over time. Further, there 

are several reasons why this is the case. For example, the state of stresses caused by the same 

load is different in each wheel path because the boundary conditions are different. One would 

expect a higher degree of confinement in the IWP than in the OWP and as it is well known from 

soil mechanics, the shearing resistance of a soil is higher for higher confining pressures. Thus, 

the different state of stresses and possibly different resistances can lead to different model 

parameters. For another example, consider the effect of thawing. If the pavement surface is not 
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cracked, then after a thawing cycle it will take longer for the excess water to leave the pavement 

structure under the IWP than under the OWP (the drainage path is longer). 

Despite the fact that one should expect differences in the parameter estimates for both wheel 

paths, the differences we obtained were suspiciously high. For example, the estimates for β5 

were 2.16 for the IWP and 3.72 for the OWP and the estimates for β6 were 2.92 for the IWP and 

4.81 for the OWP. Further, the estimate of β9 was 0.524 for the IWP and 0.377 for the OWP 

which was inconsistent with the generally observed faster rutting rate for the IWP during periods 

without thawing. 

A possible explanation for the above results is that the objective function is very flat near the 

optimum along some paths in the parameter hyper-space and therefore the variation in 

performance between the two wheel paths can cause high differences in the parameter estimates. 

This may happen despite the high t-statistics, which are computed using partial derivatives of the 

predicted values of rut depth with respect to each of the parameters. The variation in one 

parameter alone may have a pronounced effect in the objective function, but the same variation 

in conjunction with variations from other parameters may have a negligible effect. For example, 

a high rutting rate could be attained with a high value for β4 (the subgrade coefficient), or high β5 

and β6 (the load equivalence coefficients) with a low  β9 (the loading exponent), or low β5 and β6 

but a high β9 or some other combination. These interactions are believed to cause the differences 

in the parameter estimates. Since the observations for both wheel paths show similar trends but at 

the same time some clear differences, combining them can help to reduce the uncertainty of 

common parameter estimates. This is similar in concept to the effect of the variance of the 

independent variables in linear regression models. In such models, other things being equal, the 

larger the variance in the independent variables, the smaller the variance of the parameter 

estimates.  

From a practical point of view, one would like to summarize the effect of traffic in a single 

variable independently of which wheel path is being considered. This is actually what is done by 

pavement engineers when they use the concept of an equivalent single axle load (ESAL). 

Therefore the model was re-estimated for both wheel paths simultaneously restricting only β5, 

β6, and β7 to be the same for both wheel paths. The fit was only slightly lower than when the 

model was estimated separately for each wheel path, thus confirming the suspicions mentioned 

above. 

 23



Table 1 shows the estimation results using the random effects approach. The parameter estimates 

using the fixed effects approach were practically the same. All the coefficients are statistically 

significant and have the expected signs. According to these results, the asphalt concrete layer is 

only 1.68  or 1.53 (β1/β2) times more effective in reducing rutting than the base layer for the IWP 

and OWP respectively. For the OWP the contribution of the base is 1.23 (β2/β3) times the 

contribution of the subbase but this result is reversed for the IWP where the contribution of the 

base is 0.87 times the contribution of the subbase. The factors affecting the pavement 

performance on each wheel path mentioned above may play a role in this result. No comparisons 

are made between β1, β2, and β3 for the different wheelpaths because their values are related to 

the value of β4. The estimate of β4 for the OWP is about twice the estimate for the IWP. This is 

in agreement with the hypothesis that subgrade material is more confined for the IWP.  

The coefficient β7 = 1.81 indicates that a tandem axle load of 145.15 kN (32,659 lbs) has the 

same effect on rutting as an 80kN (18,000 lbs) single axle load. This is in agreement with the 

assumption made at the AASHO Road Test (HRB 1962) that an 18,000 lbs single axle was 

equivalent to a 32,000 lbs tandem axle. Notice that the coefficients β5 and β6, which indicate the 

equivalencies within axle configurations (single or tandem), are significantly different from each 

other. Further, β5 = 2.98 is significantly different from 4.0. This illustrates the advantage of not 

having presupposed a 4-power law for load equivalencies. 

 

Table 1: Model estimation results. 

Inner wheel path Outer wheel path 
Parameter Parameter 

Description H0
* Parameter

Estimate 
Asymptotic 
t-statistic 

Parameter 
Estimate 

Asymptotic
t-statistic 

β1 Asphalt concrete coefficient 0 3.34 589.35 5.43 24.8 
β2 Base coefficient 0 2.07 344.91 3.57 45.81 
β3 Subbase coefficient 0 2.36 386.23 2.87 43.28 
β4 Subgrade coefficient 0 0.90 45.30 1.89 84.18 
β5 Single axle exponent 1 2.98 140.95 2.98 140.95 
β6 Tandem axle exponent 1 3.89 81.01 3.89 81.01 
β7 Conversion to standard tandem axle 1 1.81 739.02 1.81 739.01 
β8 Thawing index coefficient 0 1.96 592.30 1.60 376.18 
β9 Nit exponent 0 0.412 145.43 0.452 78.06 
β10 constant 0 -0.449 -42.25 0.022 2.57 
σε

2 = 4.53 συ
2 = 6.17      

Number of observations = 14042      
* Null hypothesis for which the asymptotic t-statistics are computed 

 24



The significance of β8, the coefficient of the thawing index, shows that the inclusion of the 

environmental effects is very important to avoid biasing the other parameters. These estimates 

are also in agreement with the hypothesis that thawing has a greater proportional effect on the 

IWP than on the OWP. 

The values of β9 are consistent with the concave shapes reported in the literature. This is also a 

convenient result because, when using such models for prediction, traffic forecasts are usually 

subject to error, specially for longer planning horizons. Therefore, it is desirable for the model 

predictions to be robust with respect to traffic forecasting uncertainty. For our model, a 20 % 

underestimation of Nit causes only a 13 % overestimation of ∆RDit whereas a 20 % 

overestimation of Nit causes a 10 % underestimation of ∆RDit. 

The estimates of σu
2, 6.17 and of σε

2, 4.53 indicate that the individual effects produce more than 

50 % of the variance. This shows that the size of the unobserved heterogeneity is significant. 

Finally, the estimated standard error of the regression, 3.3 mm, is within the accuracy with which 

rut depth can be measured. The result is even better in a pavement management context where 

the random effects are less important since previous observations of rut depth are used to predict 

the future observations. In this case the estimate of σε is more relevant which is only 2.1 mm.  

Figures 6 shows a comparison of the predicted rut depths to the observed rut depths for two of 

the sections in the estimation sample. As can be observed in the figure the pavement behavior of 

these sections is replicated quite well for both wheel paths. With a few exceptions, this was 

generally the case. This was further confirmed by a prediction test with a set of pavements not 

used for estimation. Figure 7 shows two examples for these sections. 

The above results indicate that the model assumptions seem to be generally valid. It should be 

noticed, however, that the residuals from some sections indicate some heteroskedasticity 

(variance increasing with thawing index) which leads to some estimation inefficiency.  

 

Conclusions 

The goal of this report was to develop a model of pavement rutting from the AASHO Road Test. 

A non-linear model was specified and estimated. The model specification uses concepts that are 

familiar to pavement engineers such as load equivalencies and structural coefficients. However, 

the model in this report is an improvement over other state of the art empirical models for several 

reasons. The load equivalence parameters and the resistance parameters were allowed to vary 
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freely during estimation. This is in contrast with previous research where these coefficients are 

pre-specified. This is perhaps one reason for the lack of success in developing empirical models 

to date. 

Another important difference with previous research is the introduction of a thawing index. This 

variable proved to be extremely important to capture the effect of the environment at the 

AASHO Road Test. 
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Figure 6: Observed and predicted rut depth vs. time for two sections used to estimate the model 

parameters. The design in the figure caption indicates the thicknesses (meters) of asphalt 

concrete, base, and subbase respectively. The axle loads are expressed in kN (KiloNewtons) and 

S or T indicate single or tandem axle respectively. 
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Figure 7: Observed and predicted rut depth vs. time for two sections not used to estimate the 

model parameters. The design in the figure caption indicates the thicknesses (meters) of asphalt 

concrete, base, and subbase respectively. The axle loads are expressed in kN (KiloNewtons) and 

S or T indicate single or tandem axle respectively.   
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The model fits were good, especially considering the number of sections and observations that 

were used for their estimation. Both fixed effects and random effects specifications were used to 

account for unobserved heterogeneity. The results showed that the size of the unobserved 

heterogeneity was significant. 

The specification of a non-linear model allowed a good fit. However, it also called for a more 

careful analysis of the estimation results even when all the statistics indicated no problems. In 

particular, our model contained several parameters that interacted so as to capture similar effects. 

By estimating the model parameters for both wheel paths jointly, we were able to reduce the 

uncertainty in these parameters’ estimated values.  

Finally, a prediction test with a set of pavements not used for estimation confirmed that the 

model replicates well the pavement behavior at the AASHO Road Test. 

 

Pavement Cracking Initiation Model 

 

Cracking Mechanisms 

Fatigue Cracking 

Fatigue cracking generally occurs at low to moderate pavement temperatures, after the pavement 

has been in service for a period of time.  It results from the cumulative effects of repeated 

loading cycles.  The most critical stress is the tensile stress at the bottom of the layer.  Fatigue 

cracks normally start at the underside of the asphalt treated layer and progress to the pavement 

surface.  An advanced stage of fatigue cracking is called alligator cracking, where cracks are 

plentiful and join in an alligator scale pattern.  Fatigue cracking can be caused by excessive 

heavy load applications, a thin asphalt treated layer, or high pavement deflections.  The stiffness 

of the asphalt mix plays a major role in its fatigue behavior. Since the aggregate and the asphalt 

influence mix stiffness, both materials are important contributors to the fatigue resistance of an 

asphalt mix.  Normally, more flexible, elastic materials provide longer fatigue life while stiff, 

brittle materials are more prone to cracking.  One exception to this rule is with thick asphalt 

pavements where higher stiffness mixes will produce longer fatigue life.  Transition areas 

between thin and thick asphalt pavement are about 50 to 100 mm. 

Thermal Cracking 

Depending on the climate, two mechanisms of thermal cracking may be involved: 
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• Low temperature cracking; and  

• Thermal fatigue cracking. 

Low temperature transverse cracking has been recognized as the most common non-traffic 

associated failure mode and is a serious problem in Northern parts of the world including the 

United States and Canada (OECD, 1988).  Low temperature cracking occurs when the tensile 

stress caused by cold or rapidly declining temperatures exceeds the strength of an asphalt 

pavement.  Low temperature cracking appears as nearly equally spaced transverse cracks on the 

pavement surface.  The asphalt binder plays a major role in low temperature cracking.  Hard 

asphalt or excessively aged asphalt is prone to low temperature cracking.  Waxy asphalt concrete 

mixes are also susceptible to low temperature cracking.  

The second mechanism is thermal fatigue cracking.  In hot climates, especially where there are 

long periods of sunshine, daily temperature variations give rise to repeated thermal stresses in the 

surfacing, which in conjunction with the stresses produced by traffic, lead to failure through 

fatigue.  Such cracks develop at a slower rate.  This is generally referred to as thermal fatigue 

cracking.  Block cracking is the usual consequence.  In such hot climates, the aging of asphalt 

through oxidation and the evaporation of volatile oils further aggravate the situation.  This 

increases the stiffness of the surfacing and intensifies thermal stresses.  Note that the mechanism 

of failure is the same for low temperature cracking as for thermal fatigue cracking; the only 

difference is in the rate at which cracking occurs.  Thus, one may refer to both phenomena as 

thermal cracking. (Hiltunen and Roque, 1994) 

 

Causes of Cracking; Material Characteristics, Climate, and Loading 

Cracking performance depends on many factors, including 

• The thickness of various pavement layers; 

• The quality of the construction materials and practices; 

• Environmental considerations, such as temperature and moisture; and 

• The axle loads and axle configurations to which the pavement is subjected. 

The importance of layer thickness is evident: thicker pavements deflect less under load, and thus 

are less susceptible to fatigue cracking.  Previous research, starting before the AASHO Road 

Test (HRB, 1962) has shown that the thickness of the asphalt concrete layer is more important 

than that of the unbound layers in retarding pavement cracking initiation. 
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Material characteristics also play an important role in pavement performance. It is generally 

believed that a dense aggregate gradation gives better cracking performance.  It is also believed 

that good compaction is necessary for better cracking resistance, while more asphalt content 

gives better resistance to cracking.  On the other hand, excessive asphalt content leads to lower 

rutting resistance. 

Climatic factors can also affect to a large extent the performance and mechanical properties of 

pavement components and hence the pavement structure’s ability to withstand traffic loads.  The 

reason is that seasonal weather variations introduce variations of material properties and 

therefore periodic changes of the specific pavement characteristics (OECD, 1988).  Moisture has 

a significant impact on the cracking resistance of the asphalt mix. Excessive moisture in a 

pavement can reduce the strength of underlying layers, weaken the bond between the asphalt and 

aggregate, and reduce the stiffness or strength of the asphalt treated layer. 

The aging of the asphalt mix can accelerate cracking.  Because asphalt cements are composed of 

organic molecules, they react with oxygen from the environment.  This reaction is called 

oxidation and it changes the structure and composition of asphalt molecules.  Oxidation causes 

the asphalt cement to become more brittle, generating the term oxidative hardening or age 

hardening.  Oxidative hardening happens at a relatively slow rate in a pavement and it is not the 

main cause of cracking, although it occurs faster in warmer climates and during warmer seasons.  

Because of this hardening, old asphalt pavements are more susceptible to cracking. 

Finally, the distribution of axle loads and configurations to which a pavement is subjected affects 

its cracking resistance.  Previous research has shown that the effect of increasing axle loads on 

pavement life is highly non-linear (HRB 1962).  Pavement engineers typically assume that the 

functional form relating axle load to damage is convex, with the equivalence between two 

different loads being represented by a transformation raised to the fourth power.  Previous 

research has also indicated that, for a given load, tandem axles are about 40% less detrimental to 

pavement condition than single axles. 

 

Modeling Approaches 

This section reviews how pavement engineers have modeled pavement cracking in the past.  The 

modeling approaches are generally divided into the following two categories: 

• Mechanistic–Empirical Models; and  
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• Empirical Models 

The focus of this research is on the statistical estimation of empirical models that relate field data 

on crack initiation to explanatory variables representing the pavement structure, traffic loading, 

and climate.  However, mechanistic-empirical models will also be reviewed since (1) useful 

information can be obtained by studying other approaches, and (2) it will help to explain why an 

empirical approach was adopted. 

 

Mechanistic-Empirical Models 

Analytical methods refer to the numerical calculation of the stress, strain, or deflection in a 

multi-layered system, such as a pavement, when subjected to external loads, or the effects of 

temperature or moisture.  Mechanistic methods or procedures refer to the ability to translate the 

analytical calculations of pavement response to performance such as cracking or rutting.   

Mechanistic pavement design methods are based on the assumption that a pavement can be 

modeled as a multi-layered elastic or visco-elastic structure on an elastic or visco-elastic 

foundation.  Assuming that pavements can be modeled in this manner, it is possible to calculate 

the stress, strain, or deflection (due to traffic loading and/or environments) at any point within or 

below the pavement structure.  However, researchers recognize that pavement performance will 

likely be influenced by a number of factors that will not be precisely modeled by mechanistic 

methods.  It is, therefore, necessary to calibrate the models with observations of performance, 

i.e., empirical correlation.  The resulting model is referred to as a mechanistic-empirical model. 

(AASHTO, 1993)  Mechanistic-empirical models have the advantage of representing a wide 

range of traffic compositions and environmental conditions.   

The use of mechanistic-empirical models to predict fatigue cracking performance for asphalt 

concrete pavement has been investigated by various researchers throughout the world over the 

past 40 years. From initial understanding of the critical mechanisms responsible for this distress 

has come development of pavement response calculation methods and statistical transfer 

functions to relate calculated responses to observed pavement performance (Long et al, 1996).  

This subsection reviews the mechanistic-empirical models since the principles of mechanistic 

modeling can identify suitable model forms and variables for specifying empirical models. 
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Deacon et al (1997) evaluated the effects of binder loss stiffness on pavement performance.  In 

their research, regression models of laboratory fatigue life versus tensile strain of the following 

form were used: 

( ) 2/1 N 1f
KK ε=                                       (17) 

where 

fN  = laboratory fatigue life; 

ε  = tensile strain; and 

1K  and  = regression coefficients. 2K

Crack initiation times observed in the field differ widely from laboratory test results because of 

such factors as crack propagation, traffic wander, and intermittent loading.  Finn et al (1977) and 

Harvey et al (1997) used similar equations to represent fatigue lives for laboratory data but also 

developed a shift factor to provide results compatible with field observations. 

Tayebali et al (1994) examined the effects of various mix properties on fatigue life.  They 

explored the effects of mode-of-loading on in-situ mix performance.  The mode-of-loading 

analysis was based on models of the following type: 

( ) ( ) ( ) ( )ed ScVMFba 0000f  or   exp  exp  N σε=                                                             (18) 

where 

fN  = cycles to failure; 

MF = mode factor assuming variables of 1 and –1 for controlled-strain and controlled-stress 

loading, respectively; 

0V  = initial air-void content in percent; 

0ε  = initial flexural strain in in/in; 

0σ  = initial flexural stress in psi; 

0S  = initial mix stiffness in psi; and 

a, b, c, d, e = regression coefficients. 

While such studies have provided rich understanding of pavement failure under idealized 

conditions (i.e., laboratory tests), they required empirical studies using field data for calibration 

and validation purposes.   
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Empirical Models 

The AASHO Road Test, which is described in some detail in Appendix A, was an accelerated 

loading test experiment.  A crack initiation model was developed as part of the test.  The crack 

initiation model uses traffic repetitions as the dependent variable and pavement thickness and 

load type as explanatory variables.  Though the AASHO cracking model’s functional form was 

apparently arbitrary, the model has been widely accepted.  It forms the basis for most current 

pavement design procedures in the world today.  The AASHO Road Test Report 5 proposed the 

following crack initiation equation.   

( )
( ) 2
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where 

Wc = number of weighted axle applications sustained by the pavement before appearance of 

Class 2 Cracking; 

D1, D2, D3 = thickness of surfacing, base and sub-base respectively, in inches; 

L1 = nominal axle load, in kips;  

L2 = 1 for single axle configuration and 2 for tandem axle configuration; 

1a , , ,  = coefficients that were assigned earlier; and 2a 3a 4a

0A , , ,  = regression coefficients. 1A 2A 3A

The AASHO model suffered from severe problems.  These are discussed below.  First, the 

analysis did not account for censoring.  The data are considered censored when cracking is not 

actually observed.  In the case in which the section had cracked before the first inspection, the 

observation is left censored, or if it had yet to crack at the last inspection, it is considered right 

censored.  In the AASHO Road Test, there were several sections that had not cracked by the time 

the experiment ended, and these constitute right-censored data.  If censoring is not accounted for 

correctly in the statistical estimation of model parameters, the estimates can be expected to be 

biased (Greene, 1997).  Second, the model form was arbitrary.  One specific problem is the 

variable (L1 + L2), which consists of the sum of two quantities with different units.  Finally, the 

coefficients, a1 to a4, were determined a-priori instead of being estimated simultaneously with the 

other parameters.  The pre-determined parameters were used to compute the Structural Number 

of the pavement.   
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The Structural Number is related to the thickness of flexible pavement layers through the use of 

layer coefficients that represent the resistance of the material being used in each layer of the 

pavement structure.  The following general equation for structural number reflects the relative 

impact of the layer coefficients (ai) and thickness (Di): 

∑
=

=
3

1i
ia  SN iD                                                                                                                    (20) 

The estimated values of the coefficients, a1, a2 and a3, were: 0.33, 0.10, and 0.08 respectively. 

The Queiroz-GEIPOT models (Queiroz, 1981; GEIPOT, 1982) have separate regression 

equations that predict crack initiation and the rate of crack progression.  The crack initiation 

model used the number of equivalent single axles to initiation as the dependent variable and the 

structural number as the explanatory variable.  The equation for the crack initiation model is as 

follows: 

SNlog   Nlog 10c10 βα +=                                                                                                 (21) 

where 

cN  = the number of Equivalent Single Axle Loads (ESAL) needed to initiate cracking;  

SN = structural number; and 

α, β = regression coefficients. 

The World Bank’s Highway Design and Maintenance (HDM) models (Paterson, 1987) predict 

the initiation and progression of various pavement distresses such as cracking, rutting, raveling 

and roughness.  Each distress model includes a number of explanatory variables such as age, 

traffic, design parameters, environmental factors and other distresses.  A probabilistic parametric 

duration model represented crack initiation, where the dependent variable is the probability 

distribution of the time to cracking.  The basic concepts of probabilistic duration models will be 

described in section 4 of this report.  The HDM-III crack initiation model used a hazard function, 

h(t) of the following form: 

( ) ( ) 1 exp −−= γγµγ tth                                                                                                       (22) 

When  γ<1, the hazard function is decreasing through time; when γ = 1, it is a constant; and when 

γ>1, the hazard function is increasing.  In the analysis of crack initiation, the parameter µ is 

replaced by a linear function of explanatory variables x , βµ x′= . 

The resulting model for prediction of expected cumulative traffic loading to crack initiation is: 
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where 

CR2TE  = mean cumulative traffic loading at initiation of narrow cracking (in millions of ESAL); 

SN = structural number;  

SY = , where YE( 4
4 YE 000,1/SN ) 4 is the annual traffic loading (in millions of ESAL/lane/year); 

and 

β1, β2, β3 = regression coefficients. 

Several deterioration models reviewed above include separate equations for distress initiation 

and progression.  Most crack initiation models were developed without accounting for censoring, 

which may introduce bias in the parameter estimates. 

Madanat et al (1995) applied a structured econometric method for developing deterioration 

models of pavement crack initiation and progression.  A model system consisting of a discrete 

model for distress initiation and a regression model for distress progression was developed.  The 

estimation sample for the progression model is self-selected, as it contains a disproportionately 

large fraction of weaker pavements, because they are more likely to have already started 

cracking (they have lower initiation times).  This selectivity bias was corrected by using 

Heckman's sequential procedure.  Madanat and Shin (1998) extended this research to account for 

unobserved heterogeneity in the panel data set, using random-effects specifications in both the 

discrete and continuous models. 

 
Measurement of Cracking 
 
One early method used to standardize crack measurements was used at the AASHO Road Test.  

Cracking was divided into three categories: Class 1, Class 2, and Class 3, as illustrated in Figure 

8.  Class 1 cracking was the earliest type observed and consisted of fine disconnected hairline 

cracks.  As distress increased, the cracks lengthened and widened until cells formed into alligator 

cracking. Such cracking was called Class 2 cracking.  When the segments of the Class 2 cracks 

spalled more severely at the edges and loosened until the cells rocked under traffic, the situation 

was called Class 3 cracking.  Class 1 cracking was not included in the evaluation of 

serviceability of the pavement. Therefore, the AASHO Road Test engineers defined crack 

initiation as the appearance of Class 2 cracking. 
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This classification was modified for use in the Brazil United Nations Development Program 

(UNDP) road cost study. Paterson (1987) used the modified classification as the basis for the 

formulation of the cracking models in HDM-III.  This method identifies cracking by type, 

severity (class), and extent (area) summarized as follows (Paterson, 1987): 

• Severity: Class1, cracks < 1mm wide; Class 2, cracks 1 to 3 mm wide; Class 3, cracks > 

3mm wide without spalling; Class 4, spalled cracks. 

• Area: the sum of rectangular cracked areas (in m2) reported as a percentage of the total 

section surface area.  Linear crack lengths were converted to area by multiplying by a standard 

width of 0.5 m. 

• Type: the following types were identified: crocodile, irregular, block, transverse, and 

longitudinal. 
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Figure 8: Cracks on asphalt pavements (HRB, 1962) 

The Brazil UNDP study indexed cracking to normalize the sum of the various AASHO class 

cracks, weighting wider cracks more heavily to reflect their ability to allow for water ingress into 

the pavement structure. 

There have been some problems in using this method in practice because it is difficult to observe 

Class 1 cracks and differentiate between cracks of different severity.  It is also important to 

realize that aging had little effect on the pavements at the AASHO Road Test, because the test 

covered only 2 years.  As a result, the cracking observed was primarily load related.  The 

absence of transverse cracking is consistent with the Brazil UNDP data, but is not typical of 

many pavements located in colder climates. 

As part of the SHRP Long Term Pavement Performance (LTPP) program, a slightly different 

approach to crack identification was developed on the basis of three crack attributes: type, 

severity (low, moderate, or high), and extent (linear or area).  Though details are not presented 

here, the manual gives thorough guidelines (SHRP, 1993). 

In the Brazil UNDP study, initiation was defined by a cracking area of 0.5 percent for practical 

reasons.  First, this helped to ensure that the cracking was not due to a local flaw 
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unrepresentative of the pavement as a whole but was caused by the mechanism of interest.  

Second, it represents the minimum size (about 5m2 on the standard 320 m by 3.5 m

for which a condition survey observation could be expected to be reliably consistent. Becaus

surveys were made at intervals of four to six months, the first recorded observation was not 

always 0.5 percent.  By convention, the initiation date was regarded as the survey date if the first 

observation was in the range of 0.5 to 5 percent (Paterson, 1987). 

In this research, initiation was defined by a cracking of five percent, which is believed to 

represent Class 2 Cracking.  This criterion was also used because i

 subsection) 

e the 

t was stable.  When we used a 

two to three percent criterion, a crack sometimes disappeared after it appeared. 

 

Model Formulation 

Stochastic Duration models 

ent in a test experiment.  T is a random variable that 

ntinuous distribution is specified by a cumulative function F(t) with 

The probability that the pavement cracks after t is given by the survival function, 

    

t these times, 

the hazard rate is a more us l 

Let T denote the time to cracking of a pavem

takes values in (0, ∞).  Its co

a density function f(t).  The cumulative distribution function is 

( ) ( ) ( )tTdssftF
t

≤== ∫ Prob 
 

0 
                                                                                        (24) 

( ) ( ) ( )tTtFtS ≥== Prob -1                                                                                          (25) 

Since we collect data at specific times, and we know the condition of pavements a

eful function than the cumulative density function or the surviva

function.  The probability that a pavement cracks in the next small interval, ∆t, given it lasts at 

least until time t, is given by 

( ) ( )tTttTttg ≥∆+<≤= |Prob                                                                                     (26) 

The hazard function, h(t), which is the instantaneous rate of change of g(t), is defined as: 

( ) ( )tT ≥

tt ∆→∆
lim

0

ttTt
th

∆+<≤
=

|Prob
                                                                          (27) 

The hazard function quantifies the instantaneous risk that the pavement sections crack at time t.  

The cumulative (or integrated) hazard function is expressed as 

The density function, the survival function, and the hazard function are all related; 

( ) ( )duuhtH
t

∫=
 

0 
                                                                                                            (28) 
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( ) ( )
( )tS
tfth =   

tH lo−=

     

e C, before all pavement sections 

have failed.  For each section e 

to cracking for pavement i is censored.  The time recorded is min (T , C ) together with the 

censoring indicator variable 

                                                                              (29) 

The following relationships between these functions also hold: 

( ) ( )tSg                                                                                                                (30) 

and 

( ) ( )tHetS −=                                                                                                                  (33) 

Right censoring of the data occurs when the test ends at tim

i, we either know Ti, if Ti ≤ C, or that Ti > C, in which case the tim

i i

iδ , which is a dummy variable that takes the value 0 if the 

density function f for uncensored observations and values of survival function S for censored 

ple of 

observation (pavement section) is censored and 1 otherwise. 

The full likelihood function is obtained by multiplying the respective contributions of values of 

observations. In the presence of right censoring the likelihood for all observations in a sam

size n is (Kalbfleisch and Prentice 1980): 

( ) ( ) ( )[ ] ( )

aximize the log likelihood function, 
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                                                                   (32) 

To estimate the parameters of the distributions, we m

( )[ ] ( ) ( )]}∑
=

−+==
n

i
iiii tStflL

1
log1loglog δδ

the 

density function and the survival function. 

 

ed to be constant over time, there are many 

tuations in which it is more realistic to suppose that h(t) either increases or decreases over time.  

                                           (33) 

Upon choosing a particular distribution, we can substitute the appropriate expressions for 

The Weibull Hazard Model 

Though the hazard function h(t) can be assum

si

A flexible form for such a hazard function is given by  

( ) 0       1 >= − ttth γαγ                                                                                                        (34) 

where α and γ are positive constants.  The hazard function given by Equation (34) is called the 

Weibull haz functard ion with parameters α and γ .  The parametric model that follows the 
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Weibull hazard function is called the Weibull model. Note that h(t) increases when γ >1; 

decreases when γ <1; and is constant when γ =1

The Weibull distribution function obtained from Equation (34) is: 

( ) ( ) 0        exp1 >⎟
⎠
⎞⎜

⎝
⎛−−= tdsshtF

t
 

. 

0∫
        ( )γαt−−= exp1                                                                                                      (35) 

Its density function is: 

(( ) ) 0       >= ttf t-exp1−t γγ ααγ                                                                                      (36) 

The survival function is thus: 

( ) ( ) ( )γαttFtS −=−= exp1       

bles x

                                                                                      (37) 

If a vector of explanatory varia  is observed with the duration data, the We

function is written as: 

ibull hazard 

( ) 1,, −−= γµγ γβ texth  

              1−−= γβγ γte x                                                                                                    (38) 

where 

     

βµ x= . Then, the distribution function, density function, and survival function are as 

follows: 

( ) ( )γβγ textF x−−exp,,                                                                                           (49) β −= 1

( ) ( )γβγγβγ γ tete xx −−− −= exp1                                                                                 (50) βxtf ,,

( ) ( )γβγ tetS x−−= exp                                                                                                        (41) 

The parameters γ and β of the mode

model, the expected 

l can be estimated by maximum likelihood.  In the Weibull 

time to cracking initiation is given by (Meeker and Escobar 1998): 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ=

γ
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⎟⎟
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⎞

⎜⎜
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⎛
+Γ=

γ
β 11xe                                                                                                        (42) 

where the gamma function, Γ(z), is defined as 
∞ −−
0

1 dwew wz   ( ) =Γ z                                                                                                        (43) ∫

for z>0. 
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Furthermore, becau alent 

ventionally reported standard error. 

se the model is not a linear regression model, there is no obvious equiv

to the con

 

Model Specification and Estimation Results 

Model Specification 

evelopment of the pavement cracking initiation 

al of 252 observations (test sections).  The number of sections that had 

ght 

• inches (0, 3, 6, and 9 inches); 

 16 inches); 

em axle. 

e erent model specifications.  Our first specification 

s presented earlier 

The AASHO Road Test Data were used for d

model.  We have a tot

cracked by the end of the test was 185.  The remaining 67 observations were censored (i.e., 

cracking had not occurred yet by the time of the test). The model shown in this section used ri

wheel path cracking as the dependent variable. The variables included are: 

• avt: number of accumulated load repetitions in the traffic lane before crack initiation (the 

dependent variable); 

• D1: surface thickness in inches (1 to 6 inches); 

D2: base thickness in 

• D3: sub-base thickness in inches (0, 4, 8, 12, and

• LOAD: nominal axle load (in kips); and 

• TYPE: single dummy variable, 1 for single axle and 0 for tand

W  estimated a Weibull model using two diff

(Model 1) was a modified version of the original AASHO model, which wa

(equation 19).  The function µ  (of the hazard model in equation 38), using this first 

specification, is shown below: 

µ  = β1 + β2D1+β3D2+β4D3+β L5  (44) 

ilar to the AASHO 

sp nts of the structural number in equation (19) 

ffects of L1 and L2 are separable and additive.  This is 

een 

 

2+β6(L1+L2)                              

where L1 and L2 are defined after equation (3).  Essentially, this is sim

ecification, with the predetermined coefficie

replaced by parameters to be estimated. 

Our second model specification improved on the original AASHO specification, which is 

problematic because it assumes that the e

physically unrealistic for two reasons.  First, it assumes a constant rate of substitution betw

axle load and axle type, which is inconsistent with pavement engineering knowledge.  Pavement

engineers typically use nonlinear equations to convert between single and tandem axle loads.  
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Second, the specification involves an addition of two variables with different units (L1 is in units 

of kips while L2 is in units of axles). 

Our improved specification accounts for the difference in the effects of a single axle and a 

tandem axle of equal load through the use of interaction terms.  The function µ  in the hazard 

model with the improved specification (Model 2) is: 

µ  = β1+β2D1+β3D2+β4D3+β5TYPE*LOAD+β6(1-TYPE)*LOAD                          (45) 

Note that we use two interactive terms for LOAD and TYPE: the first interactive term is 

β5   I on, β5 

 load. 

 is expected that an increase in pavement layer thickness increases the time to cracking of the 

 an increase in axle load, of either type, will decrease the time to pavement 

el is 

h variable is a significant explanatory variable of crack initiation at one percent 

h 

o 

 

TYPE*LOAD and the second interactive term is β6(1-TYPE)*LOAD. n this specificati

is the effect of 1 unit of a single axle load, while β6 is the effect of 1 unit of a tandem axle

 

Estimation Results 

It

pavements, and that

crack initiation. The effect of the surface layer should be greater than the effects of the two 

unbound layers, and the effect of the sub-base should be the smallest.  Moreover, the effect of 

single loads should be greater than that of tandem loads.  The dependent variable in the mod

hazard rate, not the time to cracking of the pavements, so the parameters should be interpreted 

accordingly. 

Table 2 presents the results of the Weibull model using the first specification.  The t-statistics 

show that eac

significance level.  Furthermore, it can be seen that the coefficients have the correct signs, whic

confirm our a priori hypotheses.  The ratio of the estimated resistance of the asphalt concrete t

that of the base is less than 3, which is lower than what was obtained in the original AASHO 

model.  On the other hand, the ratio of the estimated resistance of the base to that of the sub-base

is about 1.5, which is higher than what was obtained in the original AASHO model.  The 

estimated value of the parameter γ is close to 1.0, which seems to indicate a relatively constant 

hazard rate in terms of load repetitions. 
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Table 2: Parameter Estimates for Model 1 

Variable Coefficient t-statistic 

Constant 7.225 15.458 

D1 0.706 8.954 

D2 0.255 9.785 

D3 0.172 7.439 

L2 3.331 9.439 

L1+L2 -0.180 -12.694 
γ  0.924 16.366 

 

Table 3 presents the results of the Weibull model using our second specification.  Again, the t-

statistics show that each variable is a significant explanatory variable of crack initiation at one 

percent significance level.  Again, it can be seen that the coefficients have the expected signs. 

Table 3: Parameter Estimates for Model 2 

Variable Coefficient t-statistic 

Constant 10.788 60.435 

D1 0.783 11.521 

D2 0.253 12.620 

D3 0.191 10.658 

TYPE*LOAD -0.230 -21.522 

(1-TYPE)*LOAD -0.124 -18.850 
γ  0.727 17.502 

 

The ratios of the estimated resistances of the three layers are close to those obtained in the 

original AASHO model.  The results indicate that the asphalt concrete layer is about 3.1 times 

more effective in reducing the rate of crack initiation than the base layer, and the base layer is 

about 1.3 times more effective than the sub-base layer.  The AASHO results indicated that the 

asphalt concrete layer is about 3.3 times more effective in reducing crack initiation than the base 

layer, and the base layer is about 1.3 times more effective than the sub-base layer (HRB 1962). 
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The coefficients of the two interactive load terms indicate that a tandem axle load of 1.85 kip has 

the same effect on crack initiation as single axle load of 1 kip.  These relative magnitudes are 

consistent with pavement engineering knowledge.  Finally, note that the estimated value of the 

parameter γ is less than one, indicating a decreasing hazard rate with load repetitions. 

The Survival function and the cumulative hazard function computed at the means of the 

explanatory variables are shown in Figure 9 and Figure 10. 

 

 
Figure 9: Survival Function 

 
Figure 10: Cumulative Hazard Function 

The prediction accuracies of the three models (AASHO, Model 1 and Model 2), for the sample 

of observations used in estimating the parameters, were compared by computing the Root Mean 

Squared Error (RMSE) of the mean axle load repetitions until cracking initiation, as predicted 
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with each model.  The results are shown in Table 4.  The entries in the table are the RMSE of the 

predicted mean time to cracking in units of axle load repetitions.  It can be seen that Model 1 

achieves about 10% improvement in the prediction accuracy over the original AASHO model, 

while Model 2 is 20% more accurate than the AASHO model.  In other words, for this data set, 

almost equal improvements in prediction accuracy can be attributed to the two contributions of 

this research: a rigorous statistical method (stochastic duration techniques) and an improved 

model specification. 

 

Table 4: RMSE of the Mean Predicted Axle Load Repetitions to crack initiation 

AASHO Model 1 Model 2 

3.09 E+5 2.80  E+5 2.46 E+5 

 

Conclusion 

In this study, an analysis of the pavement cracking initiation data collected during the AASHO 

Road Test was conducted. This analysis is based on the use of probabilistic duration modeling 

techniques. Duration techniques enable the stochastic nature of pavement failure time to be 

evaluated as well as censored data to be incorporated in the statistical estimation of the model 

parameters. Due to the nature of pavement cracking initiation, the presence of censored data is 

almost unavoidable and not accounting for such data would produce biased model parameters. 

The main advantages that distinguish this stochastic duration model from the original AASHO 

model are as follows.  First, the duration model explicitly recognizes the stochastic variations in 

the pavement cracking initiation process.  Second, the stochastic duration model accounts for the 

fact that some of the data are censored.  Third, our specification was more realistic than that used 

in the AASHO model, in that it did not assume that the effects of axle type and load were 

separate and additive.  Finally, the predictions obtained with our hazard rate model, using our 

improved specification, were about 20% more accurate than those obtained using the original 

AASHO model. 
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Pavement Cracking Progression Model 

 
Introduction 

Pavement management decisions are based on several data items, such as the available 

budget, the cost and effectiveness of different activities, and the current and projected levels of 

usage; among these, the most important piece of information is the performance of the facilities 

in the system.  Two forms of information on pavement performance are used in maintenance and 

rehabilitation decision-making: information on current (measured) performance, which is 

obtained through facility inspection, and information on future (predicted) performance, which is 

obtained using deterioration models.  Deterioration models provide predictions of pavement 

condition over time, which are necessary inputs for planning maintenance and rehabilitation 

activities. 

Pavement deterioration models relate indicators of pavement condition to explanatory 

variables such as traffic loads, age and environmental factors.  The most common indicators of 

pavement condition are surface distresses, such as longitudinal and transverse cracking, rutting, 

potholes, etc.  These surface distresses are caused by load, moisture, temperature, construction 

defects or a combination of the above. Most of the engineering knowledge of pavement behavior 

under traffic loading has been based on mechanistic analyses of pavement structures.  While 

such studies have provided a rich understanding of pavement failure under idealized conditions, 

they had to be complemented by empirical studies using field data for calibration and validation 

purposes.  Empirical methods, when combined with mechanistic knowledge, have the advantage 

of representing a wide range of traffic compositions and environmental conditions. 

A summary of relevant previous research aimed at developing models of pavement 

cracking progression and initiation is given below.  The ARE study  (Butler et al., 1985)  

developed models of pavement distress and serviceability as a function of explanatory variables.  

The distress types modeled in the ARE study are cracking, raveling, potholes, rut depth and 

roughness.  Two different sets of models were developed for the initiation and progression 

phases of the deterioration process.  For each time period and distress type, these models predict 

the change in the extent of distress.  The EAROMAR model system (Markow and Brademeyer, 

1981)  predicts pavement performance, as well as maintenance and rehabilitation costs.  The 
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EAROMAR model differs from the ARE model in that deterioration is predicted by modeling 

the change in the material properties as a result of traffic loads and precipitation, rather than 

simply specifying the condition as a function of a vector of explanatory variables.  The Queiroz-

Geipot models (Queiroz, 1981) have separate regression equations which  predict cracking 

initiation and the rate of crack progression.  The cracking initiation model used the number of 

equivalent single axles to initiation as the dependent variable and the modified structural number 

as the explanatory variable, while cracking progression was specified to be a function of both 

structural and age parameters of the pavement.  The RITM2 team (Hodges et al., 1975), (Peirsly 

and Robinson, 1982) also developed separate models for cracking initiation and progression.  

The cracking initiation model predicts the amount of cumulative equivalent single axles applied 

during the period before cracking initiation for a given modified structural number.  The 

cracking progression model predicts the incremental change in the area of cracking as a function 

of the modified structural number and the incremental cumulative traffic loading since the most 

recent resurfacing.  The HDM models developed by the World Bank (Paterson, 1987) predict the 

initiation and progression of various pavement distresses namely cracking, rutting, potholing, 

raveling and roughness.  Each distress model includes a number of explanatory variables such as 

age, traffic, design parameters, environmental factors and other distresses. 

Several deterioration models reviewed above consist of separate equations for distress 

initiation and progression.  For example, in the World Bank study, cracking initiation was 

represented by a duration model, where the dependent variable is the probability distribution of 

the time to cracking. Cracking progression was developed as a regression model, where the 

estimation sample consisted only of pavement sections that had cracked at the time of the survey.  

Such an estimation procedure is subject to selection bias, which is introduced by non-random 

sampling of observations in the progression model.  This non-random sampling leads to data sets 

that are said to be self-selected.  Effectively, the data subset used in the estimation of the 

progression model is likely to differ significantly from the entire data set in its coverage.  As 

such, these progression models are not representative of the entire pavement population from 

which the sample was drawn. 

This report applies a structured econometric method for developing deterioration models 

of cracking initiation and progression.  A model system consisting of a hazard rate model for 

cracking initiation and a regression model for cracking progression is developed.  The estimation 

 48



sample for the progression model is self-selected, as it contains a disproportionately large 

fraction of weaker pavements, because they are more likely to have already started cracking 

(they have lower initiation times).  This selectivity bias is corrected by using Heckman's 

sequential procedure (Greene, 1993) to obtain consistent coefficient estimates.  The methodology 

for model estimation with self-selected samples is first described.  The data set used in this study 

is then discussed, and empirical results are presented.  The report concludes by discussing the 

importance of these modeling techniques in the field of pavement management. 

 

Model Development Using Self Selected Samples 

When developing continuous models using self selected samples, it is essential to account 

for the process by which observations are selected into the estimation sample.  This is 

accomplished by representing the sample selection process by a hazard rate model.  In this study, 

the initiation of cracking forms the hazard rate model and the progression of cracking forms the 

regression model.  In this situation, the estimation of the regression model is likely to suffer from 

selectivity bias.  Econometrically, selectivity bias occurs because the error terms of the two 

models are correlated due to common unobserved effects.  In the pavement deterioration context, 

such unobserved effects may include materials variations that affect the mechanics of both 

cracking initiation and progression. 

The regression model presented in this report was developed using a panel data set of 

pavements, and therefore had to account for the presence of unobserved heterogeneity, which is 

likely to exist in such data. Unobserved heterogeneity refers to the presence of persistent facility-

specific but unobserved factors, such as variations in construction quality and materials 

characteristics from one facility to the next.  If not corrected for, unobserved heterogeneity may 

lead to biased model coefficient estimates (Heckman, 1981).  The development of the hazard rate 

model was described in the previous section.  The regression model is formulated as follows. 

 

Continuous (cracking progression) model: 

Yit = β' Xit + εi + ξit ;      if Zit = 1      (46) 

where: 

Xit = a vector of independent variables specific to pavement section i in period t, 

β = a vector of coefficients to be estimated, 

 49



Yit = the dependent variable representing the extent of cracking on pavement i in time period t, 

εi = a pavement specific term, assumed normally distributed across the population of pavements, 

with mean zero and variance  σε
2 , and 

ξit = a random error term, varying across both pavements and time periods, assumed normally 

distributed with mean zero and variance σ ξ . 

Clearly, the above equation holds only for those pavements for which cracking is observed at the 

time of the survey. 

It can be expected that the pavement-specific random terms of the cracking initiation and 

progression models are correlated, since whatever unobserved pavement-specific factors that 

affected pavement cracking initiation will probably have an effect on cracking progression as 

well.  We represent this correlation by the coefficient ρ2. 

The two equations are now combined to obtain a model that applies to the observations in the 

progression model data set (Greene 1993):  

E[Yit⏐Yit is observed]  = β' Xit + βλ [φ(µ' wit ) / Φ(µ' wit)]    (47) 

where: 

φ = the standard normal probability density function, 

βλ = a coefficient to be estimated. 

Equation (5) can thus be written as: 

E[Yit⏐Yit is observed] = β' Xit + βλλit      (48) 

where, 

λit = φ (µ' wit) / Φ(µ' wit)       (49) 

 

The parameters of this model system can be estimated by Heckman's procedure which is 

a sequential estimation technique.  This method estimates the parameters of the hazard rate 

probabilities and those of the continuous model sequentially, using a three step procedure as 

given below: 

1.  Estimate the parameters of the hazard rate model by using the method of maximum 

likelihood (this was done in the previous section); 

2.  For each observation in the selected sample, the correction term given by equation (49) is 

computed. 
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3.  Estimate β  and  βλ  by generalized least square regression of equation (48) on the self-

selected sample as follows: 

Yit = β' Xit + βλλit + γit        (50) 

where, itγ  is now a random error term with zero expected value due to the presence of the 

correction term in equation (9), but that is still serially correlated because it includes εi.  This 

necessitates the use of a generalized least squares procedure (instead of the usual ordinary least 

squares) to cleanse the data from the effects of this serial correlation.  The details of the GLS 

procedure are given in (Greene, 1993). 

The second term in the right hand side (βλ λi) of equation (50) is the correction term for 

selectivity bias in this regression equation (Train, 1986).  If this term is not included in this 

model, the GLS estimation will result in biased and inconsistent estimates of the vector β.  This 

is a typical case of bias due to missing relevant explanatory variables.  It can be shown that, if ρ2  

> 0, this results in an upward bias in the estimated value of β (Greene, 1993).  Clearly, this bias 

increases with the absolute magnitude of βλ, which is an estimate of the size of the common 

unobserved effects among the initiation and progression models.  

 

Empirical Case Study 

The data set was taken from the AASHO road test, which was described in the previous 

section.  To correct for sample selectivity bias, the correction term derived earlier (βλλ) was 

included in the cracking progression model, which was estimated by GLS. The estimated 

regression model with the correction term is as follows: 

E [log(cracking) | initiated] = 4.36 – 1.45 log(SN) + 0.22 log(ESAL) + 0.14 log(TD)  (51) 

Where: 

SN: Structural Number of pavement  

ESAL: Number of Equivalent Single Axle Loads 

TD: Average Temperature Difference between Maximum and Minimum Daily Temperatures in 

the Previous Time period. 
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TABLE 5: Continuous model estimation 

Dependent Variable: log(cracking) 

Observations: 754 

R-squared: 0.713 

Variable Coefficient t-statistic 

constant 4.365 21.047 

Log(SN) -1.451 -15.386 

Log(ESAL) 0.226 17.138 

Log(TD) 0.136 2.591 

 

It can be seen that the t-statistics of all the variables are significant, and that the signs of 

all the coefficients conform to our prior expectations.  

 

Conclusions 

In this report, a structured econometric approach for modeling the initiation and 

progression of pavement cracking has been presented.  Using OLS regression for modeling 

cracking  progression leads to biased and inconsistent estimates as the sample contains only 

facilities for which cracking has been initiated, thereby introducing selectivity bias in the 

estimation.  A better approach consists of developing separate but interrelated models for 

cracking initiation and progression, which recognizes and corrects for the presence of selectivity 

bias by using appropriate correction terms.  The coefficients of the model system can be 

estimated by using a sequential procedure. Finally, the models presented in this report also 

accounted for possible unobserved heterogeneity in the panel data set, by using a random-effects 

specification. 
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Analytical Procedure for Inferring Pavement Properties from Condition Data 

 

In this section, some background on the subject of Bayesian updating will be presented.  The 

proposed procedure for pavement performance model parameter updating will be described.  The 

pavement performance model chosen to illustrate the application of Bayesian updating is the 

AASHO rutting model developed by Archilla and Madanat (1999a). 

 

Bayesian Updating 

 
In classical statistics, it is assumed that the parameters of a population are constants and sample 

statistics are used as estimators of these parameters.  Because the estimators are invariably 

imperfect and errors of estimation are unavoidable, the classical statistical approach uses 

confidence intervals to express the degree of these errors.  When the observed data are limited, 

the statistical estimates have to be supplemented by judgmental information or prior information.  

With the classical statistical approach there is no provision for combining prior information with 

observed data in the parameter estimation (Ang and Tang 1975).  For example, in a pavement 

performance model, the only way to utilize new information is to re-estimate all parameters 

using previous and new data.  This would not be cost-effective if the new measurements can be 

obtained by using high-speed sensor technologies at a higher measurement frequency.  On the 

other hand, the Bayesian approach treats the parameters as random variables and the 

measurements are sampling results.  The Bayesian updating approach provides a way to 

systematically combine the prior information and new measurement to improve the precision of 

pavement performance models. 

The parameters of the state-of-the-art rutting models that were presented in section 2 were 

estimated using classical statistics.  We can apply Bayesian updating using new observations to 

update the parameters of these models.  The model form stays the same, but the parameters of 

interest are updated.  The standard deviation of the parameters will be reduced, and hence the 

prediction precision will be improved.  The following sections present an overview of the 

Bayesian Updating Approach.  This overview is based on the presentation given in Ang and 

Tang (1975).  Depending on the distribution of the parameters, there are two cases: discrete case 

and continuous case. 
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Discrete Case 

Suppose that the possible values of a parameter θ  are assumed to be a set of discrete value θ i , i 

= 1, 2, ..., n, with relative likelihoods .  If additional information becomes 

available, the prior assumptions on the parameter 

)( θ iPpi =Θ=

θ  may be modified through Bayes’ theorem as 

follows: Let ε denote the new observation, we can update the PMF for θ  as 
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where 

)|( θε iP =Θ : the likelihood of the experimental outcome (observation) ε  if θ i=Θ ; 

)( θ iP =Θ : the prior probability of θ i=Θ ; 

)|( εθ iP =Θ : the posterior probability of θ i=Θ . 

Denoting the prior and posterior probabilities as and  respectively, we 

have: 
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The expected value of θ  , called the Bayesian estimator, is expressed as: 
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This estimator is based on prior information and updated information. 

 

Continuous Case 

If the distribution of the parameter is continuous, Bayes’ theorem gives the posterior probability 

that θ  will be in ),( θθθ ∆+ii as 
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where 
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In the limit, this yields: 
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The denominator is independent of θ  and is replaced by a notation k.  )|( θεP  is a function of θ  

and is commonly referred to as the likelihood function of θ  and denoted L(θ ).  Now we have: 

)()()( '" θθθ ff kL=          (57) 

Analogous to the discrete case, we have: 
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Examples of the application of Bayesian updating include the study by Ang (1973) in the 

inspection and detection of material defects and the study by Lu and Madanat (1994) in 

infrastructure deterioration models. 

 

Pavement Performance Model Parameter Updating 

In the proposed research, Bayesian methods will be used to update the parameters of a pavement 

performance model.  In this section, the rutting model developed by Archilla and Madanat 

(1999a) based on the AASHO road test data, reproduced below, is used to illustrate the 

parameter updating procedure: 
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Pavement sections in the field lack either initial construction data or complete performance 

history or both, and the accuracy of data is lower than that of experimental data.  Due to the 

constraints above, a complete re-calibration of model parameters using field data is infeasible.  A 

possible approach would be to re-calibrate one or some important model parameters based on 

available data, while assuming that the other parameters are constant.  The AASHO Road Test is 

a well-designed experiment and very comprehensive in terms of loading factors, environmental 

factors, and pavement layer structure.  The parameters in the AASHO model are either related to 

environmental factors (such as β 8 ), loading (such as β 5 , β 6 , β 7 , β 9 ), or pavement 

properties (such as β 1 , β 2 , β 3 , β 4 ).  The data on environmental factors and loading factors 

are easier to obtain for field pavement sections and the effects of these factors are well captured 

in the performance model.  Hence, when choosing an important parameter in the performance 

model to update, the focus is on the parameters related to pavement properties.  In other words, 

the feasibility of transferring the AASHO model to other locations depends on the updating of 

the parameters representing the pavement properties.  In the AASHO model, the parameters β 1 , 

β 2 , β 3  are used to calculate the resistance number ( ).  The parameter RN i β 4  and  are 

used to calculate the parameter .  Thus, the parameter  is a function of the parameters 

RN i

ai ai β 1 , 

β 2 , β 3 , β 4  and the pavement layer thicknesses T , T , T .  To apply the AASHO model 

to other locations such as the Mn/Road test site, we need to estimate the parameters  for the 

pavements in that location.  The thickness can be measured by using Ground Penetrating Radar 

(GPR), but the parameters 

i1 i2 i3

ai

β 1 , β 2 , β 3 , β 4  estimated in the AASHO Road Test may not apply 

for the Mn/Road pavements.  In this research, instead of updating these four parameters, the 

parameter a will be updated directly.  For the purpose of rutting prediction, it is sufficient to 

know the parameter  for each pavement section.  It is not necessary to update the individual 

parameters 

i

ai

β 1 , β 2 , β 3 , β 4 . 

In the AASHO performance model, the variable plays the role of pavement property and it is 

related to the structural number (SN) which is used by pavement engineers to characterize the 

strength of pavements.  Therefore, if we can obtain an accurate estimate of the variable for the 

pavement sections of interest, then the prediction of rut depth increment is straightforward.  To 

ai

ai
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use the performance model, which was developed based on the AASHO Road Test data, for in-

service pavement sections, we must obtain an estimate of the value of for these pavement 

sections.  The Bayesian updating approach is one way to systematically update the values of . 

ai

ai

The estimated parameters in the AASHO model of Archilla and Madanat (1999a) can be safely 

assumed to be normally distributed because the sample size used for the estimation was very 

large.  The procedure used for updating the AASHO performance model parameter is illustrated 

in Figure 11 and described below: 
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Figure 11: Bayesian Updating of the AASHO Performance Model 
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Step 2. Prior distribution of : 

The parameter we want to update is the structural number but what we observe in the field are 

 manifestations of the underlying pavement property interacting with 

loading and environmental factors.  This necessitates the derivation of the prior distribution of 

RDit∆

ai

rut depth increments that are

rut depth increment from the prior distribution of the structural number  based on the 

relationship given by the performance model.  The distribution of rut depth increment at time t, 

RDit∆ , is a function of ai and a time-dependent constant K ti,  (
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Step 4. Parameter updating: 
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both the prior information and the observations are normally distributed, they are shown (Ang 

and Tang, 1975) to be conjugate distributions and the resulting posterior distribution is also a 

normal distribution with the parameters given below: 
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Afterwards, the updated pavement property  will be used instead of  in the pavement 

performance m

in

technologies can be used to apply a pavement performance model to a specific pavement section.  

odel, can be applied to other types of 

ai
"  ai
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odel, for prediction purposes.   

The 4-step procedure above shows how new formation obtained by automated sensing 

This approach, although illustrated with a rutting m

distresses such as cracking and roughness, if good performance models for these distresses exist. 
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Test Conditions 

 

The MnRoads Test Data 

 

The AASHO Road Test equations provided adequate knowledge of pavement design for the time 

period in which they were developed and tested but there were several shortcomings.  The 

AASHO Road Test was conducted over a two-year period, so while the loading effect to 

pavement was well addressed, the contribution of climate was minimized and the interaction 

between traffic and climate was not fully related.  The changing conditions in traffic loads and 

new materials could not be incorporated in the design procedure due to the empirical nature of 

these equations.  For example, the use of higher pressure tires (from 75 psi in the late 50’ to 105 

psi in the late 80’s), higher volumes of truck traffic, and new material such as polymer modified 

asphalt binder cannot be accommodated in the models developed in AASHO Road Test (Stroup-

Gardiner et al. 1997). 

Recognizing the need to address this situation, Mn/DOT cooperated with the University of 

Minnesota in the late 80’s to develop a new pavement design method.  In order to better 

understand the effects the increased traffic loads and volumes have on pavement performance in 

Minnesota, Mn/DOT decided to build a new full scale pavement test facility to evaluate the 

current pavement performance and develop the desired pavement design method (Burnham et al. 

1997). 

The Minnesota Road Research Project, known as Mn/Road, constructed a test facility located 

approximately 40 miles northwest of Minneapolis in Otsego, Minnesota.  The facility contains 

4.8 km (3 miles) of two–lane intersate as well as 4 km (2.5 miles) of closed-loop low volume 

track and is divided into forty 150 m (500 ft) long instrumented test sections or “cells” arranged 

into two different groups of traffic loading and three different periods of service life (see Figure 

12 and 13).  The groupings are as follows: 

(1) Nine 5 year design life “mainline” cells which carry the high volume interstate (I-94) traffic 

loads, 

(2) Fourteen 10 year design life “mainline” cells which also carry the high volume I-94 traffic, 

(3) Seventeen 3 year design life “low volume” cells which receive loading from a test truck 

driven on a closed loop. 

 61



Figure 12: Mn/Road Test Facility Parallel to Interstate I-94  

(Source: Mn/ROAD webpage). 
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Figure 13: Low Volume Loop at Mn/ROAD Test Facility (Source: Mn/ROAD webpage). 

 
The I-94 traffic wis about 14,000 vehicles per day (15 percent truck) and is diverted onto the 

high volume facility where the 23 heavily instrumented test sections are subjected to real traffic 

loads.  The remaining 17 sections in the low volume facility are subjected to the loading from a 

test truck. 

Among these forty sections, twenty two are bituminous surfaced, fourteen are Portland Cement 

Concrete (PCC) surfaced, and four are aggregate surfaced.  Facility construction started in 1990 

and electronic instrumentation and paving of the cells occurred in 1992 to 1993.  The test cells 

were opened to traffic loading in August of 1994. 

The test sections are heavily instrumented and these sensors can be classified into two groups 

according to Mn/ROAD team: pavement sensors and subsurface sensors.  Pavement sensors 

contain 13 types of sensors including Concrete Embedment Strain Gage (CD) to monitor 

dynamic strains, Dynamic Soil Pressure Cell (PK) to measure vertical pressure data that will be 

used to determine the vertical stress distribution in the base and subgrade layers, and Transverse 

Embedment Strain Gage (TE) to measure horizontal strains in asphalt concrete which is related 

to the current failure criteria used in mechanistic-empirical pavement design procedures. 
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14 types of sensors serve as subsurface sensors which contain Thermocouple (TC) which is used 

to measure the temperature in the pavement surface layers, the base and subgrade and Moisture 

Block (WM) for subsurface unfrozen moisture content.  Generally speaking, Mn/ROAD test 

facility has the most sophisticated sensor systems to monitor pavement properties and behaviors 

(Stroup-Gardiner et al. 1997, Burnham et al. 1997, Garg et al. 1998). 

 

Field Tests Sites Considered for Data Analysis 
 
 
1) I25/225, Denver, CO 

Description of Test Area: 

10 miles of I-25, 4 miles of I-225 

I-25 section went from MP 194. 6 to MP 204.1 

 

Pavement construction: 

According the state records, all of I-25 was asphalt over concrete, except for 0.7 miles at the 

north end, where it was full depth asphalt. The records show that the asphalt section was 

constructed in 1996. The GPR data confirms the general composite structure, with 4-8 inches of 

asphalt overlay. The GPR data shows a full depth asphalt for 0.62 miles beginning at 201.825 to 

202.44, a slightly different location than shown in the state records. State records show all of I-

225 to be full depth asphalt, constructed in August of 1999. The GPR data confirms the full 

depth asphalt construction. 

Data Collected on both of these sections included longitudinal cracking and rutting, and GPR. 

Rutting and cracking are reported every 75 feet. Raw GPR data is available every foot, and was 

processed every 75 feet to coincide with the rutting and cracking data. The full depth asphalt 

section of I-25 was used for rutting evaluation. Since alligator cracking was not reported, the 

cracking model could not be applied to this data. The rut data from I-225 was very low and 

uniform, due to the fact that the pavement was very new, and therefore it was not used for data 

analysis. 

A sample of the GPR data on the full depth asphalt section of I-25 is shown in Figure 14. The 

asphalt thickness is approximately 32 cm. A sample of the rutting data vs distance is shown in 

Figure 15. 
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Figure 15 - Rut Depth Data from I-25 Northbound 

 

2) Tamiami Trail, US 41, South Florida 

The test area was a 10 mile section of US 41 in south Florida. The data collected this section 

included longitudinal cracking and rutting, and GPR Rutting and cracking are reported every 75 

feet. Raw GPR data is available every foot, but thickness has been processed every 500 feet to 

coincide with the location of FWD tests. A sample of the available rut depth and cracking data is 

shown in Table 6. A sample of the GPR thickness data is shown in Table 7. Figure 16 shows a 

plot of the cracking data. 

No construction history or traffic information could be obtained for this site.  

 65



0

200

400

600

800

1000

1200

1400

1600

1800

0 10000 20000 30000 40000 50000 60000

Distance (ft)

C
ra

ck
ed

 A
re

a 
(s

q.
ft)

Figure 16 – Sample Plot of Cracked Area vs. Distance for Tamiami Trail 

 

3) SH33 near West Bend, WI 

This is an old pavement with the following history: 

1930 - 9" Jointed Plane PCC (mesh and dowel), joint spacing unknown, probably 40') on a soil 

base of indeterminate depth. The pavement structure was 20' wide on two lanes. This was a 

typical depression era public works project from the effort to get rural (farm-market) 

transportation improved. 

1983 - A pavement improvement project widened the road to 24' (two lanes) on the old 

centerline. The overlay was 5" of recycled AC hot mix. The project included base widening to 

support the wider pavement structure and shoulders. 

1995 - A pavement overlay probably 2-3" (data not available) with no improvement in cross 

section width.  

The pavement performance since 1995 has been very typical. There is no rutting and the 

transverse and longitudinal cracking are narrow and of a pattern consistent with cold weather 

cracking (tight cracks, no less than 20' spacing transversely and nothing beyond centerline 

cracking longitudinally). Nothing out of the ordinary for heavy freeze thaw state. 

GPR data was collected on this site based on WisDOT initial description of its suitability for the 

project. WisDOT initially indicated that they had detailed condition data on this pavement. 
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However, when pressed for details the data they provided was qualitative, as shown in Table 8, 

and not directly usable for the quantitative models being investigated under this project. Figure 

17 shows the results of the GPR layer thickness analysis of the section. 
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Figure 17: GPR Layer Analysis for SH 33 in Wisconsin 
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Table 6 - Sample Data File for Alligator Cracking and Rutting – Tamiami Trail

RSTNUM Object Beg Station End Station

Alligator 
Cracking 

(sf)
rut depth 

(in.)
1 352 0 75 0 0.14
2 352 75 151 0 0.15
3 352 151 226 0 0.15
4 352 226 302 0 0.14
5 352 302 377 0 0.13
6 352 377 453 0 0.14
7 352 453 528 0 0.17

352 Total 0 528 0 0.15
8 353 528 603 0 0.17
9 353 603 679 0 0.15
10 353 679 754 0 0.17
11 353 754 830 0 0.17
12 353 830 905 0 0.22
13 353 905 981 0 0.22
14 353 981 1056 0 0.18

353 Total 528 1056 0 0.18
15 354 1056 1131 0 0.20
16 354 1131 1207 0 0.24
17 354 1207 1282 0 0.25
18 354 1282 1358 0 0.25
19 354 1358 1433 91 0.27
20 354 1433 1509 0 0.21
21 354 1509 1584 140 0.28

354 Total 1056 1584 231 0.24
22 355 1584 1659 145 0.25
23 355 1659 1735 32 0.19
24 355 1735 1810 91 0.21
25 355 1810 1886 226 0.20
26 355 1886 1961 0 0.16
27 355 1961 2037 0 0.18
28 355 2037 2112 0 0.21

355 Total 1584 2112 494 0.20
29 356 2112 2187 0 0.20
30 356 2187 2263 0 0.16
31 356 2263 2338 0 0.19
32 356 2338 2414 0 0.19
33 356 2414 2489 0 0.23
34 356 2489 2565 0 0.24
35 356 2565 2640 84 0.23

356 Total 2112 2640 84 0.20
36 357 2640 2715 63 0.24
37 357 2715 2791 0 0.22
38 357 2791 2866 0 0.28
39 357 2866 2942 48 0.19
40 357 2942 3017 0 0.19
41 357 3017 3093 0 0.19
42 357 3093 3168 50 0.17

357 Total 2640 3168 161 0.21
43 358 3168 3243 32 0.21
44 358 3243 3319 16 0.23
45 358 3319 3394 16 0.21
46 358 3394 3470 165 0.26
47 358 3470 3545 143 0.17
48 358 3545 3621 38 0.19
49 358 3621 3696 0 0.17

358 Total 3168 3696 410 0.21
50 359 3696 3771 7 0.22
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Table 7 - Sample GPR Thickness Data for Tamiami Trail 

FWD GPR GPR GPR 
Station Station Thickness Thickness

(ft) (ft) (in) (m) 
Eastbound   
0 58019 10.3 0.26162 

250 57767 7.5 0.1905 
750 57262 7.7 0.19558 
1250 56758 7 0.1778 
1750 56254 7 0.1778 
2176 55824 8.4 0.21336 
2184 55816 8.4 0.21336 
2191 55809 8.2 0.20828 
2250 55749 7.2 0.18288 
2750 55245 6.7 0.17018 
3250 54741 7 0.1778 
3750 54237 7.5 0.1905 
4250 53732 5 0.127 
4750 53228 6.5 0.1651 
5250 52724 6.5 0.1651 
5750 52219 6.7 0.17018 
6250 51715 5.5 0.1397 
6750 51211 6.9 0.17526 
7250 50706 7.7 0.19558 
7750 50202 7.5 0.1905 
8250 49698 6.7 0.17018 
8750 49193 6.2 0.15748 
9250 48689 7.4 0.18796 
9750 48185 9.6 0.24384 
10250 47680 8.7 0.22098 
10750 47176 8.7 0.22098 
11250 46672 9.6 0.24384 
11750 46168 9.3 0.23622 
12250 45663 9.4 0.23876 
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Table 8 – SH33 Condition Data 

Survey Year   1986 1988 1990 1992 1994 19961998* 

Spring Distress Survey PDI 13 13 27 13 36 19 87

Transverse         

  Extent 1 1 1 1 1 1 2

  Severity 1 1 1 1 2 1 2

Longitudinal         

  Extent 1 1 1 1 2 2 1

  Severity 1 1 1 1 2 1 2

Rutting   0 0 1 0 0 0 2

Fall Ride Survey Rutting (") 0.00 0.00 0.18 0.23 0.21 0.19 0.10

         

Explanation of Distress Survey Values       

Cracking Severity  1 - tight/sealed cracks      

 2 - wide Cracks       

 3 - dislodgement in cracks      

Transverse Extent 0 - none        

 1 - 1-5 per 100' station      

 2 - 6-10 per 100' station      

 3 - 11+ per 100' station      

Longitudinal Extent 0 - none        

 1 - 1-100' per station      

 2 - 101-200' per station      

 

Rutting is assigned severity levels only. The extent is assumed to be 100 percent of the segment. 

The four severity levels are: 

0 = rutting not represent or insignificant in amount 

1 = rutting 1/4- to 1/2-inch in depth 

2 = rutting 1/2- to 1 inch in depth 

3 = rutting greater than 1 inch in depth 
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Test Results 

 

Results of Applying the Analytical Procedure to the MnRoads Test Data 

 

Tests Using the Pavement Rutting Model 

We performed two different tests of the analytical procedure using the rutting model with the 

MnRoads test data.  The first test focused on the effect of the number of measurements used on 

the prediction precision of the analytical procedure.  Toward that end, we performed the 

following experiment.  For each pavement cell in the MnRoads data set for which we have a total 

of N observations, we used the first M observations to compute the statistics of the likelihood 

function in the Bayesian updating formula.  These statistics (as described in the previous chapter) 

were then used, together with the prior statistics, to compute the relevant pavement properties.  

On the basis of these computed properties, we predicted that pavement cell’s rut depths for the 

remaining (N-M) observations.  We then compared these predictions to the observed rut depths 

for these observations.  The precision was represented by the Root Mean Squared Error (RMSE) 

of the predicted rut depths. 

The results are depicted in Figure 18, which shows three curves, one corresponding to the RMSE 

obtained using the prior information only case, one for the no-prior case (likelihood function 

only), and one for the Bayesian case that combines both sources of information.  For each curve, 

we show four data points, corresponding to the RMSE obtained with 6, 7, 8 and 9 observations 

respectively. 

Two conclusions can be readily made: 
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1. The Bayesian analytical procedure outperforms both the prior-only and the no-prior methods 

for predicting pavement rutting; 

2. Increasing the number of data points improves the rut depth prediction precision, irrespective 

of the prediction method used. 

F ig u r e  1 8 :  R M S E  f o r  t h e  t h r e e  p r e d ic t io n  m e t h o d s
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Both conclusions are consistent with statistical theory and with engineering intuition.  What we 

did not expect, however, is that the addition of measurements does not yield a very significant 

increase in precision.  By incorporating three more observations, the RMSE is not reduced by 

more than one millimeter for any of the three methods.  In fact, the predictions based on 6 

measurements have high precision (low RMSE), which is sufficient for most pavement 

management applications. 

 

The second test aimed at evaluating the precision of the analytical approach in cases where the 

inspection frequency is lower.  In a realistic pavement management context, rutting 

measurements are taken at a lower frequency than in the MnRoads data set.  Instead, pavement 

condition data will likely be collected annually.  To test the performance of the Bayesian 

approach in this context, two simulations were conducted.  In the first simulation, the 

 72



measurements collected in mid-year were used.  In the other, the measurements collect

end of the year were used.  Figure 19 summarizes the results. 

As can be seen, the RMSE obtained are small in both cases, ev

ed at the 

en relative to the cases used in the 

ual 

 

ests Using the Pavement Cracking Models

first test, where more measurements were taken.  Both the mid-year and the year-end cases 

perform better than the cases with 6 measurements.  This is due to the fact that the three ann

measurements cover a longer span of the pavement life than the six consecutive measurements.  

Effectively, the three annual measurements provide an average of a larger data set, and thus yield

 

Figure 19: R M SE for the case of annual inspections

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

Prior O nly N o Prior Bayesian

Prediction  A pproach

3 D A TA  P O IN TS  (P oin ts  taken in  m id-year)

3  D A TA  P O IN TS  (P oin ts  taken at year-end)

better results. 

T  

racking, and for measuring cracking initiation and The methods used for classifying pavement c

progression at the MnRoads test site were totally different from those used in the AASHO test.  

Therefore, it was not possible to use the MnRoads data set to test the accuracy of our AASHO 

based cracking initiation and progression models, or of the analytical procedure that uses these 

models as input. 
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Results of Applying the Analytical Procedure to Field Data 

 

ut Prediction Software (RUT)R  

he program RUT is a Windows based implementation of both the Berkeley Rutting Model and 

ting 

er are to 

atting (text files).  Four data files are required, 

) 

abbed sheet – 

e 

 set 

 entered, the user can model the 

e 

e 

 

T

the Infrasense Rutting Model.  The Berkeley Rutting Model is the Pavement Rutting Model 

described earlier in this report with Bayesean updating added to incorporate the observed rut

behavior into the model.  The Infrasense Modified Rutting Model modifies the Pavement Rutting 

Model to incorporate spatial variability where temporal measurements are unavailable. 

Figure21 depicts the main program flow.  The initial choices available to the program us

either enter project information into the tabbed data screens manually, or to use the pull down 

menu to retrieve project information from a previously stored project information file.  Once 

project information is retrieved and/or manually modified, it may be saved to a project 

information file by using the pull down menu. 

Data input to the program is in ASCII file form

one for each type of information used by the model: Weather data, Rutting data, Traffic (ESAL

data, and Thickness data.  Each line in the files represents a new set of data.  The data values for 

each data set are separated into fields on each line by spaces, tabs or commas.   

The specific format for each file is entered into the program on the appropriate t

Weather Data, Rutting Data, ESAL Data and Thickness Data.  On each of the tabbed sheets, th

user specifies the input file name, the location of each data field in the file, and the number of 

lines to skip when reading in the input data. Skip lines allows the header information to be 

ignored by specifying how many lines must be skipped when reading the file before the data

is encountered.  The specific requirements for each type of data file are defined in the Berkeley 

Rutting Model Program Implementation Documentation. 

Once the data files and their input specifications have been

rutting in each cell by selecting the Data Set tab.  Here a data directory is specified where th

results will be stored.  If the rutting distance values and the radar (thickness) distance values ar

in different scales or directions, the user can check the ‘Perform Distance Calibration’ box and 

enter the distance values of two corresponding points in each file in order to calibrate the 
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thickness data to the rutting cell data locations.  Finally, on this tab, the user will choose to 

model the cells using the Berkeley Model or the Modified Model. 

Figure22 depicts the Berkeley Model program flow and Figure23 depicts the Infrasense 

Modified Model program flow.   

Rutting data is provided as the measured rutting value (depth) per cell.  Each “cell” is a defined 

area of pavement.  The rutting increases between the date of pavement creation (new pavement 

or resurfacing) and the date of rutting measurement are interpolated using and exponential 

function: 

( )betaNalphaRutDepth ×=  

Where N is the number of accumulated load applications.  Beta is a fixed coefficient entered by 

the user, and the program estimates alpha by fitting the curve through the starting and ending rut 

values.  Future versions of the program will allow additional (“intermediate”) rutting values to be 

entered.  These values, when available, will be used to determine the value of the observed rut 

progression curve.  However, because of the cost and annoyance of obtaining rut values, there 

tends to be, in practice, little or no information about the progression of rut depth over time.   

Hence, the Modified Rutting Model or the INFRASENSE model, introduces the concept of 

homogenous sections (explained below) in order to use spatial variation in rutting to supplement 

the absent (or, at best, sparse) measure of temporal variation originally used in the Berkeley 

Model for performing Bayesian updating of the pavement model parameters. 

In both models, the data files are read using the filenames and formats specified by the user on 

the tabbed data input screens.  Data units are converted, and, if required, a distance is calibrated 

in order to match rutting data up with the appropriate thickness data.  For the Modified Model, 

the user inputs homogeneous section specifications.  A loop is then entered in which the rutting 

calculations are made for each cell. 

As depicted in Figure22, the Berkeley Model loop is as follows: 

• interpolate ESALS: 

Daily ESALs for the initial time period and the daily ESALs at the time of the last rut depth 

study performed on the cell are linearly interpolated over the entire time period.  Cumulative 2-

week values are obtained from the interpolated daily values. 

 

• interpolate rutting 
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( )betaNalphaRutDepth ×=  

 

• calculate the Thermal Index (TI) 

Daily weather data is averaged to obtain mean 2-week maximum and mean 2-week 

minimum daily temperature values. 

)0,MaxTemp(Max*accFzTI
)MinTempaccFz,0(MaxaccFz

iii

i1ii
=

−= −  

where 

 accFzi=Accumulated Freeze in the current time period 

 accFzi-1=Accumulated Freeze in the previous time period 

 TIi=Thermal Index in the current time period 

 MinTempi=Average Daily Minimum Temperarture in the current time period 

 MaxTempi=Average Daily Maximum Temperature in the current time period 

 

• Calculate a 

In the model, a, the rut depth caused by the first standard axel load, is defined as follows: 

)T*T*T*(
4 332211a βββεβ ++−∗=  

where  

β1, β2,  β3 and β4 are parameters of the model based upon materials properties 

 T1, T2 and T3 are the three pavement layer thicknesses 

 

• calculate a from Monte Carlo simulation 

An average thickness is calculated for T1, T2 and T3 for the cell interval. 

Simulation is implemented using the Box-Muller-Marsaglia method.  N samples (N = number of 

simulation samples) are obtained for the parameters β1, β2, β3 and β4 based on each parameter’s 

given standard deviation, assuming a normally distributed population.  If required, the user can 

change the materials parameters Beta1 though Beta4 and/or their standard deviations, by 

modifying them on the Simulation tab. On this tab, the user can also change the number of 

samples used to perform the simulation (N), although 1000 is the recommended value to use.  
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The value of a is calculated for each simulated sample.  The mean and standard deviation for the 

simulated a values (asim) are obtained: 

[ ])T*T*T*(
4sim 332211meana β+β+β−ε∗β=  

[ ])T*T*T*(
4sim 332211stdevâ β+β+β−ε∗β=  

 

• calculate a observed 

An estimate of a is obtained for each 2 week time interval during the interval between the initial 

time period and the time of the last rut depth study performed.  Then the mean and standard 

deviation of the observed a values are calculated. 
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• calc a posterior 

Bayesian updating provides a Bayesian posterior apost. 
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)â()â(
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• Calculate the Bayesian model results 

Rutting predictions are obtained for each future weather interval provided in the input file using 

the Bayesian value of a (apost). 
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• Save the model constraints and the rutting prediction data 
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When the user selects the Modified Model, homogeneous sections are defined based on 

common thickness values.  The variation in thickness in these sections as well as the variation in 

rutting within a section is used to refine the calculation of the posterior a value.   

Figure24 shows the flow chart of the process used to define and create homogeneous 

sections.  As seen in Figure24, the user must first enter the defining characteristics of the 

homogeneous section - which layer to use, the minimum acceptable segment length, maximum 

difference in average thickness between segments, and a minimum and maximum range value to 

use when reading in the input data.   

Once these definitions are provided, the thickness data is read in and truncated at the 

maximum and minimum range values.  Truncation provides a means to deal with anomalies in 

the data set so that unusually large or small incorrect values will not unduly influence the 

section’s average value calculation.  Thence, defining homogeneous sections proceeds as 

follows: 

• A weighted area is defined for each distance interval (x) 

 

 Ax =(distx-distx-1)*Tx

• The average response is calculated 

 

  rhat = (Ax - A0)/ (distx-dist0)

• The cumulative difference slope is defined 

 

 

 

• Segments are initially defined by the minimum acceptable segment length set by the user 

Cumulative Area:  Ahatx =(distx-distx-1)*rhat + Ahatx-1  
Cumulative Difference:  Zx =Ax-Ahatx
Slope:    mZx =(Zx-Zx-1)/ (distx-distx-1)  

• Segments are combined to form homogeneous sections based on the following rules 

 

Combine adjacent segments having the same sign slope 
Combine adjacent segments having common averages 
Combine segments which are < min segment size w/ the adjacent segment of closest average value
Combine adjacent segments having common averages
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Once the sections are created, the spatial variance in the measured thickness for each 

section is then used in the simulation process in the estimate of a.  Hence, when rutting is 

estimated for each cell, a prior (which will now contains an estimate of the spatial variance in the 

thickness of the homogeneous section) is combined with the observed a values (which will now 

contain an estimate of the variability of rutting within the homogeneous section) to create a new 

posterior a. 

As depicted in Figure23, the Modified Model loop is as follows: 

• Define Homogeneous Sections 

• For each homogeneous section, calculate a from Monte Carlo simulation  

Use the mean and standard deviation of section thickness, as well as the statistical beta 

parameters, to obtain values of beta and thickness for each sample. 

The value of a is calculated for each simulated sample.  The mean and standard deviation for the 

simulated a values (asim) are obtained: 

[ ])T*T*T*(
4sim 332211meana β+β+β−ε∗β=  

[ ])T*T*T*(
4sim 332211stdevâ β+β+β−ε∗β=  

 

• interpolate ESALs for each cell in the homogeneous section 

• interpolate rutting for each cell in the homogeneous section 

( )betaNalphaRutDepth ×=  

• calculate Thermal Index (TI) for each cell in the homogeneous section 

Daily weather data is averaged to obtained mean 2-week maximum and mean 2-week 

minimum daily temperature values. 

)0,MaxTemp(Max*accFzTI
)MinTempaccFz,0(MaxaccFz

iii

i1ii
=

−= −  

where 

 accFzi=Accumulated Freeze in the current time period 

 accFzi-1=Accumulated Freeze in the previous time period 

 TIi=Thermal Index  in the current time period 

 MinTempi=Average Daily Minimum Temperature in the current time period 
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 MaxTempi=Average Daily Maximum Temperature in the current time period 

 

• calculate a observed for each cell in the homogeneous section 

An estimate of a is obtained for each 2 week time interval during the interval between the initial 

time period and the time of the last rut depth study performed.  Then the mean and standard 

deviation of the observed a values are calculated. 
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• Calculate the mean a observed and the standard deviation of a observed for all cells in the 

homogeneous section. 

)a(stddevâ

)a(meana
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=

=
 

 

• calc a posterior for the homogeneous section 

Bayesian updating provides a Bayesian posterior apost. 
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• Calculate the Bayesian model results for each cell in the homogeneous section 

Rutting predictions are obtained for each future weather interval provided in the input file using 

the homogeneous section Bayesian value of a (apost). 
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• Save the model constraints and the rutting prediction data 

• Repeat the calculations for the next homogeneous section… 
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Figure 21 Overall Program Flow  
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Figure 23 – "Modified" Rutting Model 
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Model Simulations 

 

Model simulations have been carried out using data from I25 in Denver and the Tamiami  

Trail in Florida. Initial simulations were carried out on the I25 data by aggregating the 

pavement into structurally homogeneous sections, and evaluating the thickness in those 

sections. The modified model, which is based on pavement variability of thickness within 

these sections, could not be applied to this data unless a more detailed thickness analysis 

were conducted. 

The Tamiami trail data provided a suffient level of detail to allow the modified model to 

be implemented. Figure25 below shows the various models applied to a single cell of the 

Tamiami pavement. The plot shows the development of rutting over time using the 

various model predictions incorporated into this work. Figure26 shows the spatial 

variability of rutting vs distance (horizontal axis) and vs. time. Both of these output 

formats are produced directly by the RUT program. 

Figure25 Rut Predictions from Various Models for a Single Cell – Tamiami Trail 
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Figure26 Rut Predictions vs. Distance and Time – Tamiami Trail 
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Evaluation of Results 

 

Pavement Rutting Prediction 

 

The goal of this part of our research was to develop a model of pavement rutting from the 

AASHO Road Test. A non-linear model was specified and estimated. The model 

specification uses concepts that are familiar to pavement engineers such as load 

equivalencies and structural coefficients. However, the model in this report is an 

improvement over other state of the art empirical models for several reasons. The load 

equivalence parameters and the resistance parameters were allowed to vary freely during 

estimation. This is in contrast with previous research where these coefficients are pre-

specified. This is perhaps one reason for the lack of success in developing empirical 

models to date. 

Another important difference with previous research is the introduction of a thawing 

index. This variable proved to be extremely important to capture the effect of the 

environment at the AASHO Road Test. 

The model fits were good, especially considering the number of sections and 

observations that were used for their estimation. Both fixed effects and random effects 

specifications were used to account for unobserved heterogeneity. The results showed 

that the size of the unobserved heterogeneity was significant. 

The specification of a non-linear model allowed a good fit. However, it also called for a 

more careful analysis of the estimation results even when all the statistics indicated no 

problems. In particular, our model contained several parameters that interacted so as to 

capture similar effects. By estimating the model parameters for both wheel paths jointly, 

we were able to reduce the uncertainty in these parameters’ estimated values.  

Finally, a prediction test with a set of pavements not used for estimation confirmed that 

the model replicates well the pavement behavior at the AASHO Road Test. 

Our analytical approach for using the predictions of the pavement rutting model, together 

with measurements of pavement rutting for predicting future rutting also provided good 

results. From the tests performed using the field data from MnRoads, two conclusions 

were made: 
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1. The Bayesian analytical procedure outperforms both the prior-only and the no-prior 

methods for predicting pavement rutting; 

2. Increasing the number of data points improves the rut depth prediction precision, 

irrespective of the prediction method used. 

Both conclusions are consistent with statistical theory and with engineering intuition.  

What we did not expect, however, is that the addition of measurements does not yield a 

very significant increase in precision.  By incorporating three more observations, the 

RMSE is not reduced by more than one millimeter for any of the three methods.  In fact, 

the predictions based on 6 measurements have high precision (low RMSE), which is 

sufficient for most pavement management applications. 

 

Pavement Cracking Prediction 

In this part of our study, an analysis of the pavement cracking initiation data collected 

during the AASHO Road Test was conducted. This analysis is based on the use of 

probabilistic duration modeling techniques. Duration techniques enable the stochastic 

nature of pavement failure time to be evaluated as well as censored data to be 

incorporated in the statistical estimation of the model parameters. Due to the nature of 

pavement cracking initiation, the presence of censored data is almost unavoidable and not 

accounting for such data would produce biased model parameters. 

The main advantages that distinguish this stochastic duration model from the original 

AASHO model are as follows.  First, the duration model explicitly recognizes the 

stochastic variations in the pavement cracking initiation process.  Second, the stochastic 

duration model accounts for the fact that some of the data are censored.  Third, our 

specification was more realistic than that used in the AASHO model, in that it did not 

assume that the effects of axle type and load were separate and additive.  Finally, the 

predictions obtained with our hazard rate model, using our improved specification, were 

about 20% more accurate than those obtained using the original AASHO model. 

While we were successful in developing accurate models of cracking initiation and 

progression, we were unable to test our analytical procedure for using these models 

together with field measurements of pavement cracking to improve the prediction 

accuracy of cracking progression.  The reason for this is that the methods of measuring 
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cracking vary widely among experimental sites and state agencies.  As a result, it was not 

possible to identify any field data site where the measurement of cracking was consistent 

with the definition used in the AASHO road test. 
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CHAPTER 3 

CONCLUSIONS AND RECOMMENDATIONS 

 
The work carried out in the first Phase of this project demonstrated how newly 

formulated models for pavement rutting and cracking can be implemented using data 

from current high speed pavement survey technology. The demonstrated effort showed 

how data from conventional high speed rutting, cracking, and pavement thickness (GPR) 

sensors can be integrated into the models to predict future performance of pavement 

sections. The demonstration also showed how compensation could be made for the 

absence of historical condition data (as is often the case) by using spatial variability in 

structurally homogeneous sections, as identified through the GPR thickness data.  

Software was developed for implementation of the portion of the rutting and simulations 

were conducted to predict future rutting using current condition data from an in-service 

pavement. Software was also developed for implementation of the cracking model.  

 

The three areas for recommended future work are: 

1) Complete the development and testing of the rutting and cracking models and 

conduct trial simulations using the software developed in Phase I 

2) Apply the rutting and cracking models to pavement sections in California 

representing a range of structural, traffic, and environmental conditions 

3) Correlate the model predictions with actual changes in surface conditions. 

 

Recommended Task 1. Model Simulations  

1.1 Rutting Model 

The rutting simulations in Phase I utilized the portion of the model that represented 

rutting in the base layer. The portion of the model that represents rutting in the asphalt 

layer was combined with the base rutting model toward the end of the project. The 

combined model needs to be incorporated into simulation software and simulations need 

to be carried out using actual pavement data. 
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1.2 Cracking Model 

In Phase I the cracking model was programmed into the simulation software but there 

was not adequate time to run simulations. Such simulations will be carried out on one of 

the Phase I data sets to insure proper performance of the software and reasonableness of 

results. 

 

Recommended Task 2. Application of Models to California Pavement Sections 

The objective of this task is to apply the cracking and rutting model software to pavement 

sections representing typical California conditions. This task will include selection of test 

sections, collection of surface and GPR data on these sites, and application of prediction 

models to the data.  

 

2.1 Selection of Test Sites 

The plan is to selection approximately 30 pavement sections for detailed evaluation. 

These can include special test sites in California that are currently being intensely 

monitored.  Sections can also be selected in conjunction with a current Caltrans program 

to assess pavement design procedures. Under this Caltrans program, Stantec, under 

contract with Caltrans, is collecting surface condition data on 1000 pavement sections 

throughout California. In addition to the condition data, information on traffic (ESALs), 

pavement structure, and construction history are being assembled into a database. We 

will utilize this database to provide a set of sites with representative set of pavement age, 

construction history, structure, traffic, and environmental exposure.  

 

2.2. Collection of Data on Test Sites 

Arrangements will be made to collect rutting, cracking, and GPR data on each test 

section. Data will be collected and processed for utilization in the cracking and rutting 

prediction software.  

 

2.3 Data Processing 
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Data from the test sites will be processed to yield predictions of cracking and rut depth 

for future time horizons and future conditions (i.e., changes in traffic, climactic events, 

etc.). The processed data will be evaluated to insure that reasonable results are obtained.  

 

Recommended Task 3 – Correlation of Predictions to Actual Condition 

The test sections will be re-surveyed for rutting and cracking after one year and again 

after two years. The results of these follow up surveys will be correlated with the model 

predictions.  
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CHAPTER 4 

 
IMPLEMENTATION 

 

Software specifications 
 
Input format: comma separated ASCII text files 

Input files: 

 Weather data  

month/day/year/maximum and minimum daily temperature values 

 Rutting/Cracking Data 

  month/day/year/cell/from station/to station/rut depth 

 Layer thickness data 

  Distance/Thickness Layer 1/Thickness layer 2/ Thickness layer 3  

 ESAL data 

  month/day/year/cell/esal 

Distance Calibration 

 GPR layer thickness stationing is adjusted to distances for rut depth and cracking 

Rut Model Implementation 

 Option 1 – Original Berkeley Model 

   Assumes that rutting data is available vs. time 

a) simulate “a” and σa for each cell using β statistics and layer 

thicknesses 

b) calculate “a” for each time that rut depth data is available using rut 

model over two week intervals, and calculate σa from this data 

c) use Bayesian updating to obtain “a” for future prediction 

 

Option 1a – Modified Berkeley Model 

(for situations where rut depth measurements are available at only one point in time) 

b)   select a function for extrapolating rut depth history to time zero, and use this function to 

calculate bi-weekly “a”. Calculate mean “a”. Calculate σa or use σa  from other historic 

data set 
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other steps remain the same 

 

Option 2 – Infrasense modified Berkeley Method 

(uses concept of homogenous sections to introduce spatial variation for rut depth and 

thickness. These spatial variations generate σa from spatial rather than historic data) 

a) divide the pavement into homogeneous sections 

b) simulate “a” and σa for each cell using β statistics and layer 

thicknesses statistics over the homogeneous section 

c) calculate “a” for each cell from current rutting data and functional fit 

to time zero.  

d) calculate σa  from all of the “a” values in the homogeneous section 

e) use Bayesian updating to obtain “a” for future prediction within each 

homogeneous section 

f) apply “a” to each cell for local prediction of future rutting. 

 

Model Output: 

 Text file of rut depth vs. time for each cell 

 Text file of rut depth vs. station for selectable future times. 

 

Rutting Model Software Documentation 

 

Data input to the program is in ASCII file format (text files).  Four data files are required, 

one for each type of information used by the model:  Weather data, Rutting data, Traffic 

(ESAL) data, and Thickness data.  Each line in the files represents a new set of data.  The 

data values for each data set are separated into fields on each line by spaces, tabs or 

commas.  Header information is allowed in the files. 
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Click here to enter the 
filename. 

File View 
Window Choose field 

eeparator 

Number of 
lines to skip in 
the file before 
e the first data 
record is 
encountered 

Select field numbers 
for each data value 

Choose the units 
for the input data

Screen tabs

Choose a record 
number to view and 
select the view 
record button to 
dsiplay it. 

 

  

he specific format for each file is entered into the program on the appropriate tabbed T

sheet – Weather Data, Rutting Data, ESAL Data and Thickness Data.  On each of the 

four data input sheets, the user specifies the input file name, the location of each data 
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field in the file, and the number of lines to skip when reading in the input data. Skip lin

allows the header information to be ignored by specifying how many lines must be 

skipped when reading the file before the data set is encountered. 

Weather data is used to input maximum and minimum daily temp

es 

erature values: 

52220   3946  10453   5290 DENVER WSFO AP 

1995  1  1   43   -7    0    0    2 

1995  1  2   26   15 9998 9998    2 

1995  1  3   21    2 9998 9998    2 

1995  1  4   21    1    0    0    2 

1995  1  5   39    5 9998 9998    1 

1995  1  6   30   16 9998    1    1 

1995  1  7   55   14    0    0    1 

1995  1  8   58   32    0    0 9998 

1995  1  9   57   31    0    0    0 

1995  1 10   66   33    0    0    0 

1995  1 11   58   28    0    0    0 

1995  1 12   50   26    0    0    0 

1995  1 13   51   27    0    0    0 

1995  1 14   61   26    0    0    0 

1995  1 15   64   33    0    0    0 

1995  1 16   44   27 9998 9998    0 

1995  1 17   41   20    0    0    0 

1995  1 18   39   14    0    0    0 

1995  1 19   49   20    0    0    0 

1995  1 20   44   22    0    0    0 

1995  1 21   45   15    0    0    0 

 

Each line of data contains a date (year, month, and day) and the daily minimum and 

w maximum temperatures recorded at the weather station.  The user needs to specify ho

the data is arranged into fields and the field (column) number for the required data.  As 

shown in the input screen, the weather data are separated by spaces, and the required 
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fields are found in these columns: the year is in column (or field) 1, the month in colum

2, the day of the month is in column 3, daily minimum temperature and daily maximum 

temperature are in columns 4 and 5.  By specifying these values, entering in the number 

of lines to skip, choosing a record to view, and selecting the View Record button, the dat

read from the file will be shown in the boxes below the field selection values.  This 

method allows the user to specify a data input format and to verify that the correct da

will be read into the program. 

In the case of weather data, the

n 

a 

ta 

 skip lines field should move the location of the first 

, 

 

to 

perature, distance, rutting depth 

pecifies the measured rutting values (depth) per cell.  Each “cell” is 

record to the date of the initial cell rutting value.  The data then displayed in the year

month and day fields when Record is set to 1 should be the same data as the date of the

initial rutting.  Enough weather data needs to be entered so that there are daily values 

beyond the date of the final rutting analysis.  The rutting model will extrapolate data in

the future for as long as there is weather data available. 

Units of the input values must be specified for daily tem

and layer thickness. 

The rutting data file s
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a defined area of pavement.  Date, cell ID and the location of the start and end points of 

the cell are also required.  Each line of data represents the rutting depth of a particular 

cell at a particular date.  Data for each cell are arranged in contiguous lines in order of 

increasing time (date).  The current program accepts two input values for each cell.  The 

first line of data is the amount of rutting for the first measured interval.  This value is 

usually a rutting value of 0 on the date that the road was constructed or last resurfaced.  

The second line is the date and amount of rutting determined from the last rut depth study 

performed on the cell.  Rutting increases between the start and end points are interpolated 

using and exponential function: 

( )betaNalphaRutDepth ×=  

Where N is the number of accumulated load applications.  Beta is a fixed coefficient 

entered by the user, and the program estimates alpha by fitting the curve through the 

starting and ending rut values.  Future versions of the program will allow additional 

(“intermediate”) rutting values to be entered.  These values will be used to determine the 

value of the observed rut progression curve. 

ESAL (Equivalent Single Axle Load) data is entered in the same manner as rutting data.  

ESAL values are daily equivalents and one value is entered for each cell value entered.  
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The current program accepts two input values for each cell.  The first line of data is t

daily ESALs for the initial time period.  The second line is the date and the daily ESALs 

at the time of the last rut depth study perform

he 

ed on the cell.  If the daily ESAL value for a 

. 

 Thickness data is entered as the measured thickness of each layer (T1-the asphalt 

concrete layer, T2-the granular base layer and T3-the subbase layer) at a given distance 

point. 

cell at the initial time period is different from the ESAL value at the end period, the daily 

ESALs are linearly interpolated over the entire time period. 

Future versions of the program will allow the input of multiple ESAL values at varying 

periods in the past and into the future so that future rutting can be modeled based upon 

both historical and future expected changes in traffic patterns
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Once the data files and their input specifications have been entered, the user can model 

n 

er the distance values of two corresponding points in each file in order to calibrate 

the thickness data to the rutting cell data locations.   

 

Two methods are available to model rutting.  Both use the Pavement Rutting Model 

described by Archilla and Madanat with Bayesean updating added to incorporate the 

observed rutting behavior into the model.  In the model, a, the rut depth caused by the 

first standard axel load, is defined as follows: 

 

the rutting in each cell.  First a data directory must be specified where the results will be 

stored.  If the rutting distance values and the radar (thickness) distance values are i

different scales or directions, the user can check the ‘Perform Distance Calibration’ box 

and ent

)T*T*T*(
4 332211a βββεβ ++−∗=  
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First method – was originally intended by Berkeley – assumed historic rutting data which 

yielded a standard deviation for the observed rutting – we had to extrapolate to time zero 

because we had no historic data. Second method – INFRASENSE mod – introduce the 

conept of homogenous sections. Use variation of a over homo section to get stdev of a for 

Bayesian. Also introducing the variation of thickness in prior model 

Selecting the ‘Berkeley Rutting Model’ button performs the first method.  When the 

button is selected, the data files are read, and the Berkeley rutting model is implemented 

for each cell of rutting data entered.  First the Thermal Index (TI) is calculated from the 

weather data, the daily ESAL values are interpolated and cumulative 2-week values 

obtained.  Then a Monte Carlo simulation is run to obtain estimates of the mean and 

standard deviation of “a” using the experimental parameters obtained from the AASHO 

Road Test and the cell thickness values for T1, T2 and T3 read in from the file.  If 

required, the user can change the materials parameters Beta1 though Beta4 and/or their 

standard deviations, by modifying them on the Simulation tab. On this tab, the user can 

also change the number of samples used to perform the simulation (N), although 1000 is 

the recommended value to use. 

Next an estimate of a is obtained for each 2 week time interval as follows: 
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The mean and standard deviation of these estimates of a are then calculated and 

ict combined with the simulated values of a to provide a posterior a which is used to pred

rutting:  
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By selecting the second button, ‘Modified Rutting Model’, homogeneous sections of 

pavement are defined based upon the user’s definition of a homogeneous section.  The 

user must specify a minimum acceptable segment length, a maximum difference in 

thickness between segments, and a minimum and maximum range value to use when 

reading in the input data.  Once the sections are created, the spacial variance in the 

measured thickness for each section is then used in the simulation process in the estimate 

of a.  Hence, when rutting is estimated for each cell, a prior, which now contains an 
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estimate of the spacial variance in the thickness of the homogeneous section, is combined 

with the observed a values for the cell to create a new posterior a. 

For each model, results for each cell are stored in the chosen results directory.  Each cell 

 modeled in a two files named from the cellID.  The rutting data is stored in a file called 

d 

9.csv”.  The data results file contained coma separated values of rutting depth 

for the entire range of time periods given.  The data is in the format “year, month, day, 

rutting depth”. 

 

Year,Month,Day,Rut 

is

d<cellID>.csv and the corresponding model parameters are stored in the file calle

m<cellID>.csv.  For example, for the cell 509, the results files will be named “d509.csv” 

and “m50

1998,5,12,3.71992338314279 

1998,5,26,4.27306987093113 

1998,6,9,4.63402365138021 

1998,6,23,4.90846833152598 

1998,7,7,5.13248863008526 

1998,7,21,5.3230953453578 

1998,8,4,5.48976309203014 

1998,8,18,5.63834949797894 

1998,9,1,5.77274663743439 

 

The model parameter file stores the model input assumptions and the calculated model 

parameters. 

 

 104



Date of Analysis Run: 3/14/01 

Rutting Data Start Date: 5/12/1998  (3.72)  (0.0) 

Rutting Data End: 10/12/1999  (7.7)  (7.7) 

Rutting Data Interpolation:  Alpha 0.552531444919107,  Beta 0.2 

Beta: 5.43, 3.57, 2.87, 1.89, 2.98, 3.89, 1.81, 1.6, 0.452, 0.022 

Thickness: 0.301, 0, 0.222 

A(mean) - Simulation: 0.198871 

A(stdev) - Simulation: 0.041978 

A(mean) - Observed: 0.012448 

A(stdev) - Observed: 0.017052 

A(mean) - Posterior: 0.038851 

 

A(mean) - ASHO calc: 0.194954 

Rutting Number: 2.27157 

 

From the file menu, the user may store all project settings.  All values from the data input 

 File, SaveProject menu and can later be reloaded from the 

 option saves considerable effort in reentering information 

 need to be performed.  A final selection from the File 

e user to select a group of cells from the data files stored in 

e selected results directory to use in creating a matrix report.  This report will take data 

r time in entire asphalt interval. 

screens will be saved from the

File, LoadProject menu.  This

if several runs on the same data

menu, MatrixReport allows th

th

at user selected time slices from the selected cells to create a report showing the change 

in rutting ove
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Systems Specifications 

ftware specifications. 

erated by the sensor 

ement performance analysis. The software specifications 

acking and rutting models are implemented on the 

 

Equipment specifications 

he hardware specifications primarily address the frequency, resolution, accuracy, and 

 
 
The specifications are divided into equipment specifications and so

The equipment specifications govern the type of data that is gen

equipment for use in the pav

govern the manner in which the cr

sensor data 

 

T

format of the collected data.  

 

Rutting: 

Cracking:

Measurement unit: mm 

Measurement Resolution: < 0.1 mm 

Reporting Frequency:  between 10 and 30 meters 

Accuracy: +/-0.5mm 

Positioning accuracy - chainage : ± 0.05% 

Width of coverage: one lane, both wheelpaths 

Format of data: average rut depth for each reported cell 

 

 

Measurement: fatigue (alligator) cracking 

Definition of Fatigue Cracking: series of interconnected cracks, developing into many     

sided sharp-angled pieces, usually less than 0.3 m on the longest side 

Measurement unit: percentage (% of affected area per total area observed) 

Measurement Resolution: < 0. 5%  

Reporting Frequency:  between 10 and 30 meters 

Accuracy: +/-1.0%  
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Positioning accuracy - chainage : ± 0.05% 

idth of coverage: one lane W

 

Layer Thickness 

Measurement: Measurement of surface (asphalt), base, and sub-base thicknesses, 

measured in meters 

Measurement Resolution: ±0.01m 

Collection Frequency: one data point per meter 

Reporting Frequency: average value over 10-30 meters 

Accuracy: ±5% 

idth of Coverage: Centerline of the lane 

ata

W

 

Sample rutting and cracking d  
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Currently Available Equipment – Rut and Crack Surveys 

 

4 226 302 0.00% 0.14
5 302 377 0.00% 0.13

377 453 0.00% 0.14
453 528 0.00% 0.17

603 0.00% 0.17
679 0.00% 0.15

3.87% 0.17
11 754 830 4.53% 0.17
12 830 905 3.87% 0.22

981 3.87% 0.22
1056 4.20% 0.18

15 1056 1131 0.00% 0.20
1131 1207 2.76% 0.24
1207 1282 0.00% 0.25

18 1282 1358 1.77% 0.25
19 1358 1433 21.66% 0.27
20 1433 1509 12.71% 0.21
21 1509 1584 27.73% 0.28
22 1584 1659 26.41% 0.25
23 1659 1735 16.46% 0.19
24 1735 1810 19.23% 0.21
25 1810 1886 27.96% 0.20
26 1886 1961 17.79% 0.16
27 1961 2037 25.52% 0.18
28 2037 2112 22.32% 0.21
29 2112 2187 12.60% 0.20
30 2187 2263 11.82% 0.16
31 2263 2338 8.73% 0.19
32 2338 2414 3.54% 0.19
33 2414 2489 10.39% 0.23
34 2489 2565 8.29% 0.24
35 2565 2640 32.93% 0.23
36 2640 2715 17.90% 0.24
37 2715 2791 13.48% 0.22
38 2791 2866 11.38% 0.28
39 2866 2942 23.76% 0.19
40 2942 3017 11.82% 0.19
41 3017 3093 8.29% 0.19
42 3093 3168 11.93% 0.17

Cell # Beg Station End Station
Fatigue 

Cracking

Rut 
Depth 
(in.)

1 0 75 0.00% 0.14
2 75 151 0.00% 0.15
3 151 226 0.00% 0.15

6
7
8 528
9 603

10 679 754

13 905
14 981

16
17
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ARAN Equipment for Rut Depth (from Roadware, Canada) 

 

 
ARAN Equipment for Rut Depth and Crack Detection  (from Roadware, Canada) 
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Laser RST for Cracking and Rutting Measurements (from IMS/Terracon, USA) 

 

 
PavVue Vehicle for Rut Depth and Cracking Measurement (from IMS, USA) 
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Survey Vehicle for Rut Depth and Crack Detection (from GIE, Canada) 

 

 

 
 

Survey Vehicle for Rut Depth and Crack Detection (from Pavdex, USA) 
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Rutting/Cracking Survey Vehicles from WDM (UK) 
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Currently Available Equipment – GPR Thickness Surveys 

 

 
    Single Antenna (CPC, DK) ual Antenna (IMS/Terracon, USA) 

 

D

 113



  

 
Single Antenna, Rear (WaveTech, USA) Dual Antenna, Rear (GSSI, USA) 
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Pavement Evaluation Using Integrated Data from High-Speed Sensors 
 
 

Recommendations 
 
The work carried out in the first Phase of this project demonstrated how newly 
formulated models for pavement rutting and cracking can be implemented using data 
from current high speed pavement survey technology. The demonstrated effort showed 
how data from conventional high speed rutting, cracking, and pavement thickness (GPR) 
sensors can be integrated into the models to predict future performance of pavement 
sections. The demonstration also showed how compensation could be made for the 
absence of historical condition data (as is often the case) by using spatial variability in 
structurally homogeneous sections, as identified through the GPR thickness data.  
 
Software was developed for implementation of the portion of the rutting and simulations 
were conducted to predict future rutting using current condition data from an in-service 
pavement. Software was also developed for implementation of the cracking model.  
 
The three areas for recommended future work are: 
 

1) Complete the development and testing of the rutting and cracking models and 
conduct trial simulations using the software developed in Phase I 

2) Apply the rutting and cracking models to pavement sections in California 
representing a range of structural, traffic, and environmental conditions 

3) Correlate the model predictions with actual changes in surface conditions. 
 
 
Recommended Task 1. Model Simulations  
 
1.1 Rutting Model 
 
The rutting simulations in Phase I utilized the portion of the model that represented 
rutting in the base layer. The portion of the model that represents rutting in the asphalt 
layer was combined with the base rutting model toward the end of the project. The 
combined model needs to be incorporated into simulation software and simulations need 
to be carried out using actual pavement data. 
 
1.2 Cracking Model 
 
In Phase I the cracking model was programmed into the simulation software but there 
was not adequate time to run simulations. Such simulations will be carried out on one of 
the Phase I data sets to insure proper performance of the software and reasonableness of 
results. 
 
Recommended Task 2. Application of Models to California Pavement Sections 
 
The objective of this task is to apply the cracking and rutting model software to pavement 
sections representing typical California conditions. This task will include selection of test 



sections, collection of surface and GPR data on these sites, and application of prediction 
models to the data.  
 
2.1 Selection of Test Sites 
 
The plan is to selection approximately 30 pavement sections for detailed evaluation. 
These can include special test sites in California that are currently being intensely 
monitored.  Sections can also be selected in conjunction with a current Caltrans program 
to assess pavement design procedures. Under this Caltrans program, Stantec, under 
contract with Caltrans, is collecting surface condition data on 1000 pavement sections 
throughout California. In addition to the condition data, information on traffic (ESALs), 
pavement structure, and construction history are being assembled into a database. We 
will utilize this database to provide a set of sites with representative set of pavement age, 
construction history, structure, traffic, and environmental exposure.  
 
2.2. Collection of Data on Test Sites 
 
Arrangements will be made to collect rutting, cracking, and GPR data on each test 
section. Data will be collected and processed for utilization in the cracking and rutting 
prediction software.  
 
2.3 Data Processing 
 
Data from the test sites will be processed to yield predictions of cracking and rut depth 
for future time horizons and future conditions (i.e., changes in traffic, climactic events, 
etc.). The processed data will be evaluated to insure that reasonable results are obtained.  
 
Recommended Task 3 – Correlation of Predictions to Actual Condition 
 
The test sections will be re-surveyed for rutting and cracking after one year and again 
after two years. The results of these followup surveys will be correlated with the model 
predictions.  
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